1 resultado para COMBINING DATA
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Augmented Reality (AR) is currently gaining popularity in multiple different fields. However, the technology for AR still requires development in both hardware and software when considering industrial use. In order to create immersive AR applications, more accurate pose estimation techniques to define virtual camera location are required. The algorithms for pose estimation often require a lot of processing power, which makes robust pose estimation a difficult task when using mobile devices or designated AR tools. The difficulties are even larger in outdoor scenarios where the environment can vary a lot and is often unprepared for AR. This thesis aims to research different possibilities for creating AR applications for outdoor environments. Both hardware and software solutions are considered, but the focus is more on software. The majority of the thesis focuses on different visual pose estimation and tracking techniques for natural features. During the thesis, multiple different solutions were tested for outdoor AR. One commercial AR SDK was tested, and three different custom software solutions were developed for an Android tablet. The custom software solutions were an algorithm for combining data from magnetometer and a gyroscope, a natural feature tracker and a tracker based on panorama images. The tracker based on panorama images was implemented based on an existing scientific publication, and the presented tracker was further developed by integrating it to Unity 3D and adding a possibility for augmenting content. This thesis concludes that AR is very close to becoming a usable tool for professional use. The commercial solutions currently available are not yet ready for creating tools for professional use, but especially for different visualization tasks some custom solutions are capable of achieving a required robustness. The panorama tracker implemented in this thesis seems like a promising tool for robust pose estimation in unprepared outdoor environments.