2 resultados para COEVOLUTION
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
ABSTRACT Fescues consist of wild and cultivated grasses that have adapted to a wide range of environmental conditions. They are an excellent model species for evolutionary ecology studies that investigate symbiosis and polyploidization and their effects on plant performance. First, they are frequently infected with symbiotic endophytic fungi known to affect a plant’s ability to cope with biotic and abiotic environmental factors. Second, fescue species have been reported to have substantial intraspecific variation in their ploidy level and morphology. In my thesis, I examined large-scale generalizations for frequency of polyploidy and endophyte infections and their effects on plant morphology. As a model species, I selected red (Festuca rubra) and viviparous sheep’s (F. vivipara) fescues. They are closely related, but they differ in terms of distribution and endophyte infection frequency. I investigated the biogeographic pattern and population biology of 29 red and 12 viviparous sheep’s fescue populations across ≈300 latitudes in Europe (400-690 N). To examine plant ploidy levels, I implemented time- and cost-efficient plate-based high throughput flow cytometric analysis. This efficient procedure enabled me to analyze over 1000 red fescue individuals. I found three ploidy levels among them: overall 84 %, 9 % and 7 % of the red fescue plants were hexaploid, tetraploid and octoploid, respectively. However, all viviparous sheep’s fescue plants were tetraploid. Ploidy level of red fescue appeared to some extent follow gradients in latitude and primary production as suggested by previous studies, but these results could be explained better by taking the sampling design and local adaptation into account. Three Spanish populations were mostly tetraploids and one high elevation population in northernmost Finland (Halti) was octoploid, while most other populations (25 sites) were dominated by hexaploids. Endophyte infection frequencies of wild fescue populations varied from 0 to 81 % in red fescue populations and from 0 to 30 % in viviparous sheep’s fescue populations. No gradients with latitude or primary production of the sites were detected. As taxonomy of red fescues is somewhat unclear, I also studied morphology, ploidy variation and endophyte status of proposed subspecies of European red fescues. Contrary to previous literature, different ploidy levels occurred in the same subspecies. In addition to wild fescues, I also used two agronomically important cultivars of meadow and tall fescue (Schedonorus phoenix and S. pratensis). As grass-legume mixtures have an agronomic advantage over monocultures in meadows, I carried out a mixture/competition experiment with fescues and red clover to find that species composition, nutrient availability and endophyte status together determined the total biomass yield that was higher in mixtures compared to monocultures. The results of this thesis demonstrate the importance of local biotic and abiotic factors such as grazing gradients and habitat types, rather than suggested general global geographical or environmental factors on grass polyploidization or its association with symbiotic endophytic fungi. I conclude that variation in endophyte infection frequencies and ploidy levels of wild fescues support the geographic mosaic theory of coevolution. Historical incidents, e.g., glaciation and present local factors, rather than ploidy or endophyte status, determine fescue morphology.
Resumo:
Reciprocal selection between interacting species is a major driver of biodiversity at both the genetic and the species level. This reciprocal selection, or coevolution, has led to the diversification of two highly diverse and abundant groups of organisms, flowering plants and their insect herbivores. In heterogeneous environments, the outcome of coevolved species interactions is influenced by the surrounding community and/or the abiotic environment. The process of adaptation allows species to adapt to their local conditions and to local populations of interacting species. However, adaptation can be disrupted or slowed down by an absence of genetic variation or by increased inbreeding, together with the following inbreeding depression, both of which are common in small and isolated populations that occur in fragmented environments. I studied the interaction between a long-lived plant Vincetoxicum hirundinaria and its specialist herbivore Abrostola asclepiadis in the southwestern archipelago of Finland. I focused on mutual local adaptation of plants and herbivores, which is a demonstration of reciprocal selection between species, a prerequisite for coevolution. I then proceeded to investigate the processes that could potentially hamper local adaptation, or species interaction in general, when the population size is small. I did this by examining how inbreeding of both plants and herbivores affects traits that are important for interaction, as well as among-population variation in the effects of inbreeding. In addition to bi-parental inbreeding, in plants inbreeding can arise from self-fertilization which has important implications for mating system evolution. I found that local adaptation of the plant to its herbivores varied among populations. Local adaptation of the herbivore varied among populations and years, being weaker in populations that were most connected. Inbreeding caused inbreeding depression in both plants and herbivores. In some populations inbreeding depression in herbivore biomass was stronger in herbivores feeding on inbred plants than in those feeding on outbred ones. For plants it was the other way around: inbreeding depression in anti-herbivore resistance decreased when the herbivores were inbred. Underlying some of the among-population variation in the effects of inbreeding is variation in plant phenolic compounds. However, variation in the modification of phenolic compounds in the digestive tract of the herbivore did not explain the inbreeding depression in herbivore biomass. Finally, adult herbivores had a preference for outbred host plants for egg deposition, and herbivore inbreeding had a positive effect on egg survival when the eggs were exposed to predators and parasitoids. These results suggest that plants and herbivores indeed exert reciprocal selection, as demonstrated by the significant local adaptation of V. hirundinaria and A. asclepiadis to one another. The most significant cause of disruption of the local adaptation of herbivore populations was population connectivity, and thus probably gene flow. In plants local adaptation tended to increase with increasing genetic variation. Whether or not inbreeding depression occurred varied according to the life-history stage of the herbivore and/or the plant trait in question. In addition, the effects of inbreeding strongly depended on the population. Taken together, inbreeding modified plant-herbivore interactions at several different levels, and can thus affect the strength of reciprocal selection between species. Thus inbreeding has the potential to affect the outcome of coevolution.