13 resultados para CFRP Nanofibre Laminati Damping Impatto

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the study is to obtain a mathematical description for an alternative variant of controlling a hydraulic circuit with an electrical drive. The electrical and hydraulic systems are described by basic mathematical equations. The flexibilities of the load and boom is modeled with assumed mode method. The model is achieved and proven with simulations. The controller is constructed and proven to decrease oscillations and improve the dynamic response of the system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sähkömoottorin jatkuva-aikainen kunnonvalvonta vaatii tiedonsiirtoa moottorilta ylemmälle tietojärjestelmätasolle, kuten taajuusmuuttajalle. Uusien kaapeleiden asennus on työlästä ja kallista. Moottorin ja taajuusmuuttajan välillä on kuitenkin aina kaapeli, jota käytetään moottorin tehonsyöttöön. Tätä kaapelia on mahdollista käyttää myös tiedonsiirtokanavana. Tässä diplomityössä käsitellään ja tutkitaan sähköverkkotiedonsiirtomenetelmää, jonka avulla voidaan muodostaa Ethernet-yhteys moottorilta taajuusmuuttajalle tai toisinpäin. Työssä kehitetään simulointimalli tiedonsiirtokanavan taajuusriippuvan vaimennuksen simuloimiseen. Lisäksi kehitetään kytkentärajapinta, joka mahdollistaa tiedonsiirron kolmivaiheisessa taajuusmuuttajan syöttämässä moottorikaapelissa. Työssä suunnitellaan ja toteutetaan tiedonsiirtoa varten pilot-laitteisto, jolla tehdään laboratoriotestit. Laboratoriotesteillä varmistetaan menetelmän soveltuvuus. Laboratoriotestien avulla etsitään myös reunaehdot tiedonsiirron toiminnalle ja tiedonsiirtonopeuteen vaikuttavia tekijöitä taajuusmuuttajakäytössä. Lisäksi tarkastellaan menetelmän aiheuttamaa viivettä, joka on tärkeäsäätösovellusten kannalta. Lopuksi arvioidaan menetelmän soveltuvuus käytännön sovelluksiin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The active magnetic bearings present a new technology which has many advantages compared to traditional bearing designs. Active magnetic bearings, however, require retainer bearings order to prevent damages in the event of a component, power or a control loop failure. In the dropdown situation, when the rotor drops from the magnetic bearings to the retainer bearings, the design parameters of the retainer bearings have a significant influence on the behaviour of the rotor. In this study, the dynamics of an active magnetic bearings supported electric motor during rotor drop on retainer bearings is studied using a multibody simulation approach. Various design parameters of retainer bearings are studied using a simulation model while results are compared with those found in literature. The retainer bearings are modelled using a detailed ball bearing model, which accounts damping and stiffness properties, oil film and friction between races and rolling elements. The model of the ball bearings includes inertia description of rollingelements. The model of the magnetic bearing system contains unbalances of the rotor and stiffness and damping properties of support. In this study, a computationally efficient contact model between the rotor and the retainer bearings is proposed. In addition, this work introduces information for the design of physicalprototype and its retainer bearings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The active magnetic bearings have recently been intensively developed because of noncontact support having several advantages compared to conventional bearings. Due to improved materials, strategies of control, and electrical components, the performance and reliability of the active magnetic bearings are improving. However, additional bearings, retainer bearings, still have a vital role in the applications of the active magnetic bearings. The most crucial moment when the retainer bearings are needed is when the rotor drops from the active magnetic bearings on the retainer bearings due to component or power failure. Without appropriate knowledge of the retainer bearings, there is a chance that an active magnetic bearing supported rotor system will be fatal in a drop-down situation. This study introduces a detailed simulation model of a rotor system in order to describe a rotor drop-down situation on the retainer bearings. The introduced simulation model couples a finite element model with component mode synthesis and detailed bearing models. In this study, electrical components and electromechanical forces are not in the focus. The research looks at the theoretical background of the finite element method with component mode synthesis that can be used in the dynamic analysis of flexible rotors. The retainer bearings are described by using two ball bearing models, which include damping and stiffness properties, oil film, inertia of rolling elements and friction between races and rolling elements. Thefirst bearing model assumes that the cage of the bearing is ideal and that the cage holds the balls in their predefined positions precisely. The second bearing model is an extension of the first model and describes the behavior of the cageless bearing. In the bearing model, each ball is described by using two degrees of freedom. The models introduced in this study are verified with a corresponding actual structure. By using verified bearing models, the effects of the parameters of the rotor system onits dynamics during emergency stops are examined. As shown in this study, the misalignment of the retainer bearings has a significant influence on the behavior of the rotor system in a drop-down situation. In this study, a stability map of the rotor system as a function of rotational speed of the rotor and the misalignment of the retainer bearings is presented. In addition, the effects of parameters of the simulation procedure and the rotor system on the dynamics of system are studied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The improvement of the dynamics of flexible manipulators like log cranes often requires advanced control methods. This thesis discusses the vibration problems in the cranes used in commercial forestry machines. Two control methods, adaptive filtering and semi-active damping, are presented. The adaptive filter uses a part of the lowest natural frequency of the crane as a filtering frequency. The payload estimation algorithm, filtering of control signal and algorithm for calculation of the lowest natural frequency of the crane are presented. The semi-active damping method is basedon pressure feedback. The pressure vibration, scaled with suitable gain, is added to the control signal of the valve of the lift cylinder to suppress vibrations. The adaptive filter cuts off high frequency impulses coming from the operatorand semi-active damping suppresses the crane?s oscillation, which is often caused by some external disturbance. In field tests performed on the crane, a correctly tuned (25 % tuning) adaptive filter reduced pressure vibration by 14-17 % and semi-active damping correspondingly by 21-43%. Applying of these methods require auxiliary transducers, installed in specific points in the crane, and electronically controlled directional control valves.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dynamical properties ofshaken granular materials are important in many industrial applications where the shaking is used to mix, segregate and transport them. In this work asystematic, large scale simulation study has been performed to investigate the rheology of dense granular media, in the presence of gas, in a three dimensional vertical cylinder filled with glass balls. The base wall of the cylinder is subjected to sinusoidal oscillation in the vertical direction. The viscoelastic behavior of glass balls during a collision, have been studied experimentally using a modified Newton's Cradle device. By analyzing the results of the measurements, using numerical model based on finite element method, the viscous damping coefficient was determinedfor the glass balls. To obtain detailed information about the interparticle interactions in a shaker, a simplified model for collision between particles of a granular material was proposed. In order to simulate the flow of surrounding gas, a formulation of the equations for fluid flow in a porous medium including particle forces was proposed. These equations are solved with Large Eddy Simulation (LES) technique using a subgrid-model originally proposed for compressible turbulent flows. For a pentagonal prism-shaped container under vertical vibrations, the results show that oscillon type structures were formed. Oscillons are highly localized particle-like excitations of the granular layer. This self-sustaining state was named by analogy with its closest large-scale analogy, the soliton, which was first documented by J.S. Russell in 1834. The results which has been reportedbyBordbar and Zamankhan(2005b)also show that slightly revised fluctuation-dissipation theorem might apply to shaken sand, which appears to be asystem far from equilibrium and could exhibit strong spatial and temporal variations in quantities such as density and local particle velocity. In this light, hydrodynamic type continuum equations were presented for describing the deformation and flow of dense gas-particle mixtures. The constitutive equation used for the stress tensor provides an effective viscosity with a liquid-like character at low shear rates and a gaseous-like behavior at high shear rates. The numerical solutions were obtained for the aforementioned hydrodynamic equations for predicting the flow dynamics ofdense mixture of gas and particles in vertical cylindrical containers. For a heptagonal prism shaped container under vertical vibrations, the model results were found to predict bubbling behavior analogous to those observed experimentally. This bubbling behavior may be explained by the unusual gas pressure distribution found in the bed. In addition, oscillon type structures were found to be formed using a vertically vibrated, pentagonal prism shaped container in agreement with computer simulation results. These observations suggest that the pressure distribution plays a key rolein deformation and flow of dense mixtures of gas and particles under vertical vibrations. The present models provide greater insight toward the explanation of poorly understood hydrodynamic phenomena in the field of granular flows and dense gas-particle mixtures. The models can be generalized to investigate the granular material-container wall interactions which would be an issue of high interests in the industrial applications. By following this approach ideal processing conditions and powder transport can be created in industrial systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The need for high performance, high precision, and energy saving in rotating machinery demands an alternative solution to traditional bearings. Because of the contactless operation principle, the rotating machines employing active magnetic bearings (AMBs) provide many advantages over the traditional ones. The advantages such as contamination-free operation, low maintenance costs, high rotational speeds, low parasitic losses, programmable stiffness and damping, and vibration insulation come at expense of high cost, and complex technical solution. All these properties make the use of AMBs appropriate primarily for specific and highly demanding applications. High performance and high precision control requires model-based control methods and accurate models of the flexible rotor. In turn, complex models lead to high-order controllers and feature considerable computational burden. Fortunately, in the last few years the advancements in signal processing devices provide new perspective on the real-time control of AMBs. The design and the real-time digital implementation of the high-order LQ controllers, which focus on fast execution times, are the subjects of this work. In particular, the control design and implementation in the field programmable gate array (FPGA) circuits are investigated. The optimal design is guided by the physical constraints of the system for selecting the optimal weighting matrices. The plant model is complemented by augmenting appropriate disturbance models. The compensation of the force-field nonlinearities is proposed for decreasing the uncertainty of the actuator. A disturbance-observer-based unbalance compensation for canceling the magnetic force vibrations or vibrations in the measured positions is presented. The theoretical studies are verified by the practical experiments utilizing a custom-built laboratory test rig. The test rig uses a prototyping control platform developed in the scope of this work. To sum up, the work makes a step in the direction of an embedded single-chip FPGA-based controller of AMBs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diplomityön tavoitteena oli laatia putkivirtaukselle laskentamalli, joka huomioi turbulenssin vaimentamiseen käytetyn lisäaineen vaikutuksen. Kirjallisuusosassa käsitellään turbulenssiin ja putkiston painehäviön laskentaan liittyviä asioita. Lisäksi käydään läpi virtausvastusta alentavien aineiden (DRA-aineiden) ominaisuuksia, vaikutusmekanismia ja niiden vaikutusta virtausominaisuuksiin sekä laskentamalleihin. Kokeellisessa osassa laadittiin kaksi Excel-pohjaista laskentamallia, joilla huomioitiin lisäaineen vaikutus putkiston virtausmäärien parantumiseen ja painehäviöihin. Malli I laskee ensin virtausvastuksen alenemisen (DR-efektin) annetuista lähtötiedoista. DR-efektien perusteella saadaan laskettua putkiston painehäviötiedot. Malli II laskee ensin virtausvastuskertoimet ilman DRA-ainetta ja DRA-aineen kanssa. Tämän jälkeen malli II laskee DR-efektin. Mallien vaatimat lähtötiedot koostuvat virtausmääristä, fluidin ominaisuuksista, polymeerin ominaisuuksista, lisäaineen annostelutiedoista ja putkiston tiedoista.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Paperiteollisuuden prosessituotteista paperia varastoidaan erikokoisina rullina esim. pystyrullavarastoihin. Tämän diplomityön tavoitteena oli kehittää Konecranesin prosessinosturille liityntä paperirullia käsittelevän kuormauselimen ja nosturin välille. Tavoitteena oli löytää kiinnitysmenetelmä, joka mahdollistaa nosturien joustavan käytön mahdollisimman pienin muutoksin itse nosturin standardoituun rakenteeseen. Pääasiallisena syventymisen kohteena oli alipaineella paperirullia nostettavan kuormauselimen liityntä. Liitynnän on kyettävä joustamaan ja vaimentamaan paperirullia nostavaan kuormauselimeen nosturin liikkeelle lähdöstä ja pysähtymisestä syntyvät herätteet ja voimat. Nosturin liikenopeus on kyettävä pitämään mahdollisimman suurena lyhyen rullienkäsittelyajan saavuttamiseksi. Liitynnältä vaaditaan kykyä ottaa kuormauselin vastaan mahdollisimman suurella nostonopeudella. Lisäksi kuorman ja kuormauselimen oskillaatio on vaimennettava mahdollisimman nopeasti samalla rajoittaen heilunnasta aiheutuvaa maksimi siirtymää. Liitynnän suunnittelu pohjautuu nosturin, kuormauselimen ja paperirullan muodostaman systeemin teoreettiseen tarkasteluun. Systeemistä laadittiin dynaaminen malli, jonka avulla tutkittiin oskillaation ja syntyvien kiihtyvyyksien suuruutta. Näiden teoriaan perustuvien tuloksien pohjalta suunniteltiin vaimennukseen tarvittavat vaimennuselementit ja liitynnän rakenne. Suunnittelutyön tuloksena saatiin liitynnälle alustava rakenne, joka mahdollistaa käytettävien vaimennuselementtien vaihtamisen ja siten tehokkaan heilunnan vaimmennuksen. Suunnittelutyön lähtökohtana oleva teoreettinen tarkastelu vaatii tuekseen esim. prototyypin kokeellisten tulosten saamiseksi ennen lopullisen tuotteen valmistamista. Suunnitteluprosessissa noudatettiin järjestelmällisen tuotesuunnittelun vaiheita ja menetelmiä.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Learning from demonstration becomes increasingly popular as an efficient way of robot programming. Not only a scientific interest acts as an inspiration in this case but also the possibility of producing the machines that would find application in different areas of life: robots helping with daily routine at home, high performance automata in industries or friendly toys for children. One way to teach a robot to fulfill complex tasks is to start with simple training exercises, combining them to form more difficult behavior. The objective of the Master’s thesis work was to study robot programming with visual input. Dynamic movement primitives (DMPs) were chosen as a tool for motion learning and generation. Assuming a movement to be a spring system influenced by an external force, making this system move, DMPs represent the motion as a set of non-linear differential equations. During the experiments the properties of DMP, such as temporal and spacial invariance, were examined. The effect of the DMP parameters, including spring coefficient, damping factor, temporal scaling, on the trajectory generated were studied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interest to hole-doped mixed-valence manganite perovskites is connected to the ‘colossal’ magnetoresistance. This effect or huge drop of the resistivity, ρ, in external magnetic field, B, attains usually the maximum value near the ferromagnetic Curie temperature, TC. In this thesis are investigated conductivity mechanisms and magnetic properties of the manganite perovskite compounds LaMnO3+, La1-xCaxMnO3, La1-xCaxMn1-yFeyO3 and La1- xSrxMn1-yFeyO3. When the present work was started the key role of the phase separation and its influence on the properties of the colossal magnetoresistive materials were not clear. Our main results are based on temperature dependencies of the magnetoresistance and magnetothermopower, investigated in the temperature interval of 4.2 - 300 K in magnetic fields up to 10 T. The magnetization was studied in the same temperature range in weak (up to 0.1 T) magnetic fields. LaMnO3+δ is the parent compound for preparation of the hole-doped CMR materials. The dependences of such parameters as the Curie temperature, TC, the Coulomb gap, Δ, the rigid gap, γ, and the localization radius, a, on pressure, p, are observed in LaMnO3+δ. It has been established that the dependences above can be interpreted by increase of the electron bandwidth and decrease of the polaron potential well when p is increased. Generally, pressure stimulates delocalization of the electrons in LaMnO3+δ. Doping of LaMnO3 with Ca, leading to La1-xCaxMnO3, changes the Mn3+/Mn4+ ratio significantly and brings an additional disorder to the crystal lattice. Phase separation in a form of mixture of the ferromagnetic and the spin glass phases was observed and investigated in La1- xCaxMnO3 at x between 0 and 0.4. Influence of the replacement of Mn by Fe is studied in La0.7Ca0.3Mn1−yFeyO3 and La0.7Sr0.3Mn1−yFeyO3. Asymmetry of the soft Coulomb gap and of the rigid gap in the density of localized states, small shift of the centre of the gaps with respect to the Fermi level and cubic asymmetry of the density of states are obtained in La0.7Ca0.3Mn1−yFeyO3. Damping of TC with y is connected to breaking of the double-exchange interaction by doping with Fe, whereas the irreversibility and the critical behavior of the magnetic susceptibility are determined by the phase separation and the frustrated magnetic state of La0.7Sr0.3Mn1−yFeyO3.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Appearance of the vibration is the very important problem in long tool turning and milling. Current solutions of minimizing vibrations provided by different tool suppliers are very expensive. This Master’s Thesis is presenting the new type of vibration free machining tools produced by Konepaja ASTEX Gear Oy that have cheaper production costs compare to competitors’ products. Vibration problems in machining and their today’s solutions are analyzed in this work. The new vibration damping invention is presented and described. Moreover, the production, laboratory experimental modal analysis and practical testing of the new vibration free prototypes are observed and analyzed on the pages of this Thesis. Based on the testing results the new invention is acknowledged to be successful and approved for further studies and developments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Large amplitude bus bar aeolian vibration may lead to post insulator damage. Different damping applications are used to decrease the risk of large amplitude aeolian vibration. In this paper the post insulator load caused by the bus bar aeolian vibration and the effect of damping methods are evaluated. The effects of three types of bus bar connectors and three types of primary structures are studied. Two actual damping devices, damping cable and their combinations are studied. The post insulator loads are studied with strain gage based custom made force sensors installed on the both ends of the post insulator and with the displacement sensor installed on the midpoint of the bus bar. The post insulator loads are calculated from the strain values and the damping properties are determined from the displacement history. The bus bar is deflected with a hanging weight. The weight is released and the bus bar is left to free damped vibration. Both actual bus bar vibration dampers RIBE and SBI were very effective against the aeolian vibration. Combining vibration damper with damping cable will increase the damping ratio but it may be unnecessary considering the extra effort. Bus bar connector type or primary structure have no effect on the vertical load. The bending moment at the post insulator with double sided bus bar connector is significantly higher than at the post insulator with single sided bus bar connector. No reliable conclusions about bus bar connector type effect can be done, but the roller bearing type or central bearing type connector may reduce the bending moment. The RHS steel frame as primary structure may increase the bending moment peak values since it is the least rigid primary structure type and it may start to vibrate as a response to the awakening force of the vibrating bus bar.