10 resultados para CAPACITORS
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
IIn electric drives, frequency converters are used to generatefor the electric motor the AC voltage with variable frequency and amplitude. When considering the annual sale of drives in values of money and units sold, the use of low-performance drives appears to be in predominant. These drives have tobe very cost effective to manufacture and use, while they are also expected to fulfill the harmonic distortion standards. One of the objectives has also been to extend the lifetime of the frequency converter. In a traditional frequency converter, a relatively large electrolytic DC-link capacitor is used. Electrolytic capacitors are large, heavy and rather expensive components. In many cases, the lifetime of the electrolytic capacitor is the main factor limiting the lifetime of the frequency converter. To overcome the problem, the electrolytic capacitor is replaced with a metallized polypropylene film capacitor (MPPF). The MPPF has improved properties when compared to the electrolytic capacitor. By replacing the electrolytic capacitor with a film capacitor the energy storage of the DC-linkwill be decreased. Thus, the instantaneous power supplied to the motor correlates with the instantaneous power taken from the network. This yields a continuousDC-link current fed by the diode rectifier bridge. As a consequence, the line current harmonics clearly decrease. Because of the decreased energy storage, the DC-link voltage fluctuates. This sets additional conditions to the controllers of the frequency converter to compensate the fluctuation from the supplied motor phase voltages. In this work three-phase and single-phase frequency converters with small DC-link capacitor are analyzed. The evaluation is obtained with simulations and laboratory measurements.
Resumo:
Pienjännitejakeluverkko Suomessa on toteutettu 400 V:n kolmivaiheisella vaihtosähköllä. Pienestä jännitteestä johtuen 20/0.4 kV:n muuntajat täytyy sijoittaa lähelle kuluttajaa, jotta siirtohäviöt eivät nouse liian suuriksi. Suuremman vaihto- tai tasajännitteen käyttö pienjännitejakelussa kasvattaisi verkon tehonsiirtokapasiteettia ja mahdollistaisi pidempien siirtomatkojen käytön. Käynnissä olevassa tutkimushankkeessa käsitellään vaihtoehtoa, jossa tasajännitettä käytettäisiin 20 kV:n verkon ja kuluttajan välisessä tehonsiirrossa ja kuluttajalla sijaitseva vaihtosuuntaaja muodostaisi tasasähköstä standardien mukaista yksi- tai kolmivaiheista vaihtosähköä. Tässä diplomityössä käsitellään tehoelektroniikan soveltamista kuluttajalle sijoitetussa vaihtosuuntaajassa. Työssä tarkastellaan yksivaiheisia invertteritopologioita, niiden ohjausta ja soveltamista erilaisissa vaihtosuuntaajaratkaisuissa sekä LC- ja LCL-suotimien soveltuvuutta invertterin lähtöjännitteen suodatukseen. Lisäksi esitellään erilaisia rakenneratkaisuja vaihtosuuntauksen toteutukseen ja tarkastellaan näiden järjestelmien vikatilanteita ja sähköturvallisuutta. Lopuksi käsitellään koko järjestelmän häviöitä ja hyötysuhdetta eri suodinkomponenteilla sekä kytkentätaajuuksilla ja esitellään laboratorioprototyyppi. Työssä saatiin selville, että puolisiltainvertteri ei sovellu suurten kondensaattorien vuoksi syöttämään verkkotaajuista kuormaa, vaan joudutaan käyttämään kokosiltainvertteriä. Kokosiltainvertterin ja LC- tai LCL-suotimen käsittävää kokonaisuutta tarkasteltaessa havaittiin, että pienimmät häviöt saavutetaan LC-suotimella 5 %:n ja LCL-suotimella 1 %:n särövaatimuksella. Hyötysuhdekäyrää tarkasteltaessa saatiin sama tulos läpi koko invertterin tehoalueen. Suotimen häviöiden tarkka laskenta on kuitenkin erittäin haasteellista, joten tulokset ovat suuntaa-antavia.
Resumo:
Technical analysis of Low Voltage Direct Current (LVDC) distribution systems shows that in LVDC transmission the customer voltage quality is higher. One of the problems in LVDC distribution networks that converters both ends of the DC line are required. Because of the converters produce not pure DC voltage, but some fluctuations as well, the huge electrolytic capacitors are required to reduce voltage distortions in the DC-side. This thesis master’s thesis is focused on calculating required DC-link capacitance for LVDC transmission and estimation of the influence of different parameters on the voltage quality. The goal is to investigate the methods of the DC-link capacitance estimation and location in the transmission line.
Resumo:
Power electronic converter drives use, for the sake of high efficiency, pulse-width modulation that results in sequences of high-voltage high-frequency steep-edged pulses. Such a signal contains a set of high harmonics not required for control purposes. Harmonics cause reflections in the cable between the motor and the inverter leading to faster winding insulation ageing. Bearing failures and problems with electromagnetic compatibility may also result. Electrical du/dt filters provide an effective solution to problems caused by pulse-width modulation, thereby increasing the performance and service life of the electrical machines. It is shown that RLC filters effectively decrease the reflection phenomena in the cable. Improved (simple, but effective) solutions are found for both differential- and common-mode signals; these solutions use a galvanic connection between the RLC filter star point and the converter DC link. Foil chokes and film capacitors are among the most widely used components in high-power applications. In actual applications they can be placed in different parts of the cabinet. This fact complicates the arrangement of the cabinet and decreases the reliability of the system. In addition, the inductances of connection wires may prevent filtration at high frequencies. This thesis introduces a new hybrid LC filter that uses a natural capacitance between the turns of the foil choke based on integration of an auxiliary layer into it. The main idea of the hybrid LC filter results from the fact that both the foil choke and the film capacitors have the same roll structure. Moreover, the capacitance between the turns (“intra capacitance”) of the foil inductors is the reason for the deterioration of their properties at high frequencies. It is shown that the proposed filter has a natural cancellation of the intra capacitance. A hybrid LC filter may contain two or more foil layers isolated from each other and coiled on a core. The core material can be iron or even air as in the filter considered in this work. One of the foils, called the main foil, can be placed between the inverter and the motor cable. Other ones, called auxiliary foils, may be connected in star to create differential-mode noise paths, and then coupled to the DC link midpoint to guarantee a traveling path, especially for the common-mode currents. This way, there is a remarkable capacitance between the main foil and the auxiliary foil. Investigations showed that such a system can be described by a simple equivalent LC filter in a wide range of frequencies. Because of its simple hybrid construction, the proposed LC filter can be a cost-effective and competitive solution for modern power drives. In the thesis, the application field of the proposed filter is considered and determined. The basics of hybrid LC filter design are developed further. High-frequency behaviour of the proposed filter is analysed by simulations. Finally, the thesis presents experimental data proving that the hybrid LC filter can be used for du/dt of PWM pulses and reduction of common-mode currents.
Resumo:
Electrochemical double-layer supercapacitors have an intermediate position between rechargeable batteries, which can store high amounts of energy, and dielectric capacitors, which have high output power. Supercapacitors are widely suggested to be used in automobiles (recuperation during braking, facilitate engine starting, electric stabilization of the system), industry (forklifts, elevators), hybrid off-road machinery and also in consumer electronics. Supercapacitor electrodes require highly porous material. Typically, activated carbon is used. Specific surface area of activated carbon is approximately 1000 m2 per gram. Carbon nanotubes represent one of prospective materials. According to numerous studies this material allows to improve the properties of supercapacitors. The task of this Master‘s Thesis was to test multiwalled carbon nanotubes and become confident with the testing methods.
Resumo:
In this thesis the design of bandpass filters tunable at 400 MHz – 800 MHz was under research. Microwave filters are vital components which provide frequency selectivity in wide variety of electronic systems operating at high frequencies. Due to the occurrence of multi-frequency bands communication and diverse applications of wireless devices, requirement of tunable filters exists. The one of potential implementation of frequency-agile filters is frontends and spectrum sensors in Cognitive Radio (CR). The principle of CR is to detect and operate at a particular available spectrum without interfering with the primary user’s signals. This new method allows improving the efficiency of utilizing allocated spectrum such as TV band (400 MHz – 800 MHz). The focus of this work is development of sufficiently compact, low cost tunable filters with quite narrow bandwidth using currently available lumped-element components and PCB board technology. Filter design, different topologies and methods of tuning of bandpass filters are considered in this work. As a result, three types of topologies of bandpass filter were simulated and realised. They use digitally tunable capacitors (DTCs) for adjusting central frequency at TV "white space" spectrum. Measurements revealed that schematics presented in this work have proper output response and filters are successfully tuned by DTCs.
Resumo:
This thesis is devoted to understanding and improving technologically important III-V compound semiconductor (e.g. GaAs, InAs, and InSb) surfaces and interfaces for devices. The surfaces and interfaces of crystalline III-V materials have a crucial role in the operation of field-effect-transistors (FET) and highefficiency solar-cells, for instance. However, the surfaces are also the most defective part of the semiconductor material and it is essential to decrease the amount of harmful surface or interface defects for the next-generation III-V semiconductor device applications. Any improvement in the crystal ordering at the semiconductor surface reduces the amount of defects and increases the material homogeneity. This is becoming more and more important when the semiconductor device structures decrease to atomic-scale dimensions. Toward that target, the effects of different adsorbates (i.e., Sn, In, and O) on the III-V surface structures and properties have been investigated in this work. Furthermore, novel thin-films have been synthesized, which show beneficial properties regarding the passivation of the reactive III-V surfaces. The work comprises ultra-high-vacuum (UHV) environment for the controlled fabrication of atomically ordered III-V(100) surfaces. The surface sensitive experimental methods [low energy electron diffraction (LEED), scanning tunneling microscopy/spectroscopy (STM/STS), and synchrotron radiation photoelectron spectroscopy (SRPES)] and computational density-functionaltheory (DFT) calculations are utilized for elucidating the atomic and electronic properties of the crucial III-V surfaces. The basic research results are also transferred to actual device tests by fabricating metal-oxide-semiconductor capacitors and utilizing the interface sensitive measurement techniques [capacitance voltage (CV) profiling, and photoluminescence (PL) spectroscopy] for the characterization. This part of the thesis includes the instrumentation of home-made UHV-compatible atomic-layer-deposition (ALD) reactor for growing good quality insulator layers. The results of this thesis elucidate the atomic structures of technologically promising Sn- and In-stabilized III-V compound semiconductor surfaces. It is shown that the Sn adsorbate induces an atomic structure with (1×2)/(1×4) surface symmetry which is characterized by Sn-group III dimers. Furthermore, the stability of peculiar ζa structure is demonstrated for the GaAs(100)-In surface. The beneficial effects of these surface structures regarding the crucial III-V oxide interface are demonstrated. Namely, it is found that it is possible to passivate the III-V surface by a careful atomic-scale engineering of the III-V surface prior to the gate-dielectric deposition. The thin (1×2)/(1×4)-Sn layer is found to catalyze the removal of harmful amorphous III-V oxides. Also, novel crystalline III-V-oxide structures are synthesized and it is shown that these structures improve the device characteristics. The finding of crystalline oxide structures is exploited by solving the atomic structure of InSb(100)(1×2) and elucidating the electronic structure of oxidized InSb(100) for the first time.
Resumo:
A high-frequency cyclonverter acts as a direct ac-to-ac power converter circuit that does not require a diode bidge rectifier. Bridgeless topology makes it possible to remove forward voltage drop losses that are present in a diode bridge. In addition, the on-state losses can be reduced to 1.5 times the on-state resistance of switches in half-bridge operation of the cycloconverter. A high-frequency cycloconverter is reviewed and the charging effect of the dc-capacitors in ``back-to-back'' or synchronous mode operation operation is analyzed. In addition, a control method is introduced for regulating dc-voltage of the ac-side capacitors in synchronous operation mode. The controller regulates the dc-capacitors and prevents switches from reaching overvoltage level. This can be accomplished by variating phase-shift between the upper and the lower gate signals. By adding phase-shift between the gate signal pairs, the charge stored in the energy storage capacitors can be discharged through the resonant load and substantially, the output resonant current amplitude can be improved. The above goals are analyzed and illustrated with simulation. Theory is supported with practical measurements where the proposed control method is implemented in an FPGA device and tested with a high-frequency cycloconverter using super-junction power MOSFETs as switching devices.
Resumo:
Superkondensaattorit paikkaavat perinteisten kondensaattorien ja akkujen väliin jäävää teho- sekä energiasuorituskyvyn kuilua sähköenergian varastoinnissa. Tässä kandidaatin-työssä selvitetään superkondensaattorien toimintaperiaate, sähköiset ominaisuudet sekä saatavilla olevien kaupallisten tuotteiden suorituskyky.
Resumo:
The usage of PV batteries nowadays became more and more widely spread. Due to the fact that the efficiency of modern PV is rising every year the prevalence of this source of energy is increasing. As the source of the energy is sunlight, these batteries need to be complimented by storage capacitors which will store energy for future use. Nevertheless the less the calculation of demanded amount of energy according the load and capacity of a storage battery that will keep the end consumer in work during certain time still is not overviewed. In this thesis the overall system will be considered and there will be made economic calculations for configurations of such system that will depend from the load. Also the behavior of the system in different geographical and climate conditions that influence of the amount of energy produced will be overviewed.