7 resultados para CANDIDATE GENES

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

70.00% 70.00%

Publicador:

Resumo:

T helper cell (Th) functions are crucial for proper immune defence against various intra- and extracellular pathogens. According to the specific immune responses, Th cells can be classified into subtypes, Th1 and Th2 cells being the most frequently characterized classes. Th1 and Th2 cells interact with other immune cells by regulating their functions with specific cytokine production. IFN, IL-2 and TNF- are the cytokines predominantly produced by Th1 cells whereas Th2 cells produce Th2-type cytokines, such as IL-4, IL-5 and IL-13. Upon TCR activation and in the presence of polarizing cytokines, Th cells differentiate into effector subtypes from a common precursor cell. IFN and IL-12 are the predominant Th1 polarizing cytokines whereas IL-4 directs Th2 polarization. The cytokines mediate their effects through specific receptor signalling. The differentiation process is complex, involving various signalling molecules and routes, as well as functions of the specific transcription factors. The functions of the Th1/Th2 cells are tightly regulated; however, knowledge on human Th cell differentiation is, as yet, fairly poor. The susceptibility for many immune-mediated disorders often originates from disturbed Th cell responses. Thus, research is needed for defining the molecular mechanisms involved in the differentiation and balanced functions of the Th cells. Importantly, the new information obtained will be crucial for a better understanding of the pathogenesis of immune-mediated disorders, such as asthma or autoimmune diseases. In the first subproject of this thesis, the role of genetic polymorphisms in the human STAT6, GATA3 and STAT4 genes were investigated for asthma or atopy susceptibility in Finnish asthma families by association analysis. These genes code for key transcription factors regulating Th cell differentiation. The study resulted in the identification of a GATA3 haplotype that associated with asthma and related traits (high serum IgE level). In the second subproject, an optimized method for human primary T cell transfection and enrichment was established. The method can be utilized for functional studies for the selected genes of interest. The method was also utilized in the third subproject, which aimed at the identification of novel genes involved in early human Th cell polarization (0-48h) using genome-wide oligonucleotide arrays. As a result, numerous genes and ESTs with known or unknown functions were identified in the study. Using an shRNA knockdown approach, a panel of novel IL-4/STAT6 regulated genes were identified in the functional studies of the genes. Moreover, one of the genes, NDFIP2, with a previously uncharacterized role in the human Th differentiation, was observed to promote IFN production of the differentiated Th1 cells. Taken together, the results obtained have revealed potential new relevant candidate genes serving as a basis for further studies characterizing the detailed networks involved in the human Th cell differentiation as well as in the genetic susceptibility of Th-mediated immune disorders.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Positron emission tomography (PET) studies on healthy individuals have revealed a marked interindividual variability in striatal dopamine D2 receptor density that can be partly accounted for by genetic factors. The examination of the extrastriatal lowdensity D2 receptor populations has been impeded by the lack of suitable tracers. However, the quantification of these D2 receptor populations is now feasible with recently developed PET radioligands. The objective of this thesis was to study brain neurobiological correlates of common functional genetic variants residing in candidate genes relevant for D2 receptor functioning. For this purpose, healthy subjects were studied with PET imaging using [11C]raclopride and [11C]FLB457 as radioligands. The candidate genes examined in this work were the human D2 receptor gene (DRD2) and the catechol-Omethyltransferase gene (COMT). The region-specific genotypic influences were explored by comparing D2 receptor binding properties in the striatum, the cortex and the thalamus. As an additional study objective, the relationship between cortical D2 receptor density and a cognitive phenotype i.e. verbal memory and learning was assessed. The main finding of this study was that DRD2 C957T genotype altered markedly D2 receptor density in the cortex and the thalamus whereas in the striatum the C957T genotype affected D2 receptor affinity, but not density. Furthermore, the A1 allele of the DRD2-related TaqIA polymorphism showed increased cortical and thalamic D2 receptor density, but had the opposite effect on striatal D2 receptor density. The DRD2 –141C Ins/Del or the COMT Val158Met genotypes did not change D2 receptor binding properties. Finally, unlike previously reported, cortical D2 receptor density did not show any significant correlation with verbal memory function. The results of this study suggest that the C957T and the TaqIA genotypes have region-specific neurobiological correlates in brain dopamine D2 receptor availability in vivo. The biological mechanisms underlying these findings are unclear, but they may be related to the region-specific regulation of dopamine neurotranssion, gene/receptor expression and epigenesis. These findings contribute to the understanding of the genetic regulation of dopamine and D2 receptor-related brain functions in vivo in man. In addition, the results provide potentially useful endophenotypes for genetic research on psychiatric and neurological disorders.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Human embryonic stem cells are pluripotent cells capable of renewing themselves and differentiating to specialized cell types. Because of their unique regenerative potential, pluripotent cells offer new opportunities for disease modeling, development of regenerative therapies, and treating diseases. Before pluripotent cells can be used in any therapeutic applications, there are numerous challenges to overcome. For instance, the key regulators of pluripotency need to be clarified. In addition, long term culture of pluripotent cells is associated with the accumulation of karyotypic abnormalities, which is a concern regarding the safe use of the cells for therapeutic purposes. The goal of the work presented in this thesis was to identify new factors involved in the maintenance of pluripotency, and to further characterize molecular mechanisms of selected candidate genes. Furthermore, we aimed to set up a new method for analyzing genomic integrity of pluripotent cells. The experimental design applied in this study involved a wide range of molecular biology, genome-wide, and computational techniques to study the pluripotency of stem cells and the functions of the target genes. In collaboration with instrument and reagent company Perkin Elmer, KaryoliteTM BoBsTM was implemented for detecting karyotypic changes of pluripotent cells. Novel genes were identified that are highly and specifically expressed in hES cells. Of these genes, L1TD1 and POLR3G were chosen for further investigation. The results revealed that both of these factors are vital for the maintenance of pluripotency and self-renewal of the hESCs. KaryoliteTM BoBsTM was validated as a novel method to detect karyotypic abnormalities in pluripotent stem cells. The results presented in this thesis offer significant new information on the regulatory networks associated with pluripotency. The results will facilitate in understanding developmental and cancer biology, as well as creating stem cell based applications. KaryoliteTM BoBsTM provides rapid, high-throughput, and cost-efficient tool for screening of human pluripotent cell cultures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One of the main goals in current evolutionary biology research is to identify genes behind adaptive phenotypic variations. The advances in genomic technologies have made it possible to identify genetic loci behind these variations, also concerning non-model species. This thesis investigates the genetics of the behaviour and other adaptive traits of the nine-spined stickleback (Pungitius pungitius) through the application of different genetic approaches. Fennoscandian nine-spined stickleback populations express large phenotypical differences especially in behaviour, life –history traits and morphology. However the underlying genetic bases for these phenotypical differences have not been studied in detail. The results of the project will lay the foundation for further genetics studies and provide valuable information for our understanding of the genetics of the adaptive divergence of the nine-spined stickleback. A candidate gene approach was used to develop microsatellite markers situating close to candidate genes for behaviour in the nine-spined stickleback. Altogether 13 markers were developed and these markers were used in the subsequent studies with the anonymous random markers and physiologically important gene markers which are already currently available for nine-spined sticklebacks. It was shown that heterozygosity correlated with behaviour in one of the marine nine-spined stickleback populations but with contrasting effects: correlations with behaviour were negative when using physiological gene markers and positive with random markers. No correlation was found between behavioural markers and behaviour. From the physiological gene markers, a strong correlation was found between osmoregulation-related gene markers and behaviour. These results indicate that both local (physiological) and general (random) effects are important in the shaping of behaviour and that heterozygosity– behaviour correlations are population dependent. In this thesis a second linkage map for nine-spined sticklebacks was constructed. Compared to the earlier nine-spined stickleback linkage map, genomic rearrangements were observed between autosomal (LG7) and sex-determing (LG12) linkage groups. This newly constructed map was used in QTL mapping studies in order to locate genomic regions associated with pelvic structures, behaviour and body size/growth. One major QTL was found for pelvic structures and Pitx1 gene was related to these traits as was predicted from three-spined stickleback studies, but this was in contrast to earlier nine-spined stickleback study. The QTL studies also revealed that behaviour and body size/growth were genetically more complex by having more QTL than pelvic traits. However, in many cases, pelvic structure, body size/growth and behaviour were linked to similar map locations indicating possible pleiotropic effects of genes locating in these QTL regions. Many of the gene related markers resided in the QTL area. In the future, studying these possible candidate genes in depth might reveal the underlying mechanism behind the measured traits.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Activated T helper (Th) cells have ability to differentiate into functionally distinct Th1, Th2 and Th17 subsets through a series of overlapping networks that include signaling and transcriptional control and the epigenetic mechanisms to direct immune responses. However, inappropriate execution in the differentiation process and abnormal function of these Th cells can lead to the development of several immune mediated diseases. Therefore, the thesis aimed at identifying genes and gene regulatory mechanisms responsible for Th17 differentiation and to study epigenetic changes associated with early stage of Th1/Th2 cell differentiation. Genome wide transcriptional profiling during early stages of human Th17 cell differentiation demonstrated differential regulation of several novel and currently known genes associated with Th17 differentiation. Selected candidate genes were further validated at protein level and their specificity for Th17 as compared to other T helper subsets was analyzed. Moreover, combination of RNA interference-mediated downregulation of gene expression, genome-wide transcriptome profiling and chromatin immunoprecipitation followed by massive parallel sequencing (ChIP-seq), combined with computational data integration lead to the identification of direct and indirect target genes of STAT3, which is a pivotal upstream transcription factor for Th17 cell polarization. Results indicated that STAT3 directly regulates the expression of several genes that are known to play a role in activation, differentiation, proliferation, and survival of Th17 cells. These results provide a basis for constructing a network regulating gene expression during early human Th17 differentiation. Th1 and Th2 lineage specific enhancers were identified from genome-wide maps of histone modifications generated from the cells differentiating towards Th1 and Th2 lineages at 72h. Further analysis of lineage-specific enhancers revealed known and novel transcription factors that potentially control lineage-specific gene expression. Finally, we found an overlap of a subset of enhancers with SNPs associated with autoimmune diseases through GWASs suggesting a potential role for enhancer elements in the disease development. In conclusion, the results obtained have extended our knowledge of Th differentiation and provided new mechanistic insights into dysregulation of Th cell differentiation in human immune mediated diseases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Prostate cancer is a heterogeneous disease affecting an increasing number of men all over the world, but particularly in the countries with the Western lifestyle. The best biomarker assay currently available for the diagnosis of the disease, the measurement of prostate specific antigen (PSA) levels from blood, lacks specificity, and even when combined with invasive tests such as digital rectal exam and prostate tissue biopsies, these methods can both miss cancers, and lead to overdiagnosis and subsequent overtreatment of cancers. Moreover, they cannot provide an accurate prognosis for the disease. Due to the high prevalence of indolent prostate cancers, the majority of men affected by prostate cancer would be able to live without any medical intervention. Their latent prostate tumors would not cause any clinical symptoms during their lifetime, but few are willing to take the risk, as currently there are no methods or biomarkers to reliably differentiate the indolent cancers from the aggressive, lethal cases that really are in need of immediate medical treatment. This doctoral work concentrated on validating 12 novel candidate genes for use as biomarkers for prostate cancer by measuring their mRNA expression levels in prostate tissue and peripheral blood of men with cancer as well as unaffected individuals. The panel of genes included the most prominent markers in the current literature: PCA3 and the fusion gene TMPRSS2-ERG, in addition to BMP-6, FGF-8b, MSMB, PSCA, SPINK1, and TRPM8; and the kallikrein-related peptidase genes 2, 3, 4, and 15. Truly quantitative reverse-transcription PCR assays were developed for each of the genes for the purpose, time-resolved fluorometry was applied in the real-time detection of the amplification products, and the gene expression data were normalized by using artificial internal RNA standards. Cancer-related, statistically significant differences in gene transcript levels were found for TMPRSS2-ERG, PCA3, and in a more modest scale, for KLK15, PSCA, and SPINK1. PCA3 RNA was found in the blood of men with metastatic prostate cancer, but not in localized cases of cancer, suggesting limitations for using this method for early cancer detection in blood. TMPRSS2-ERG mRNA transcripts were found more frequently in cancerous than in benign prostate tissues, but they were present also in 51% of the histologically benign prostate tissues of men with prostate cancer, while being absent in specimens from men without any signs of prostate cancer. PCA3 was shown to be 5.8 times overexpressed in cancerous tissue, but similarly to the fusion gene mRNA, its levels were upregulated also in the histologically benign regions of the tissue if the corresponding prostate was harboring carcinoma. These results indicate a possibility to utilize these molecular assays to assist in prostate cancer risk evaluation especially in men with initially histologically negative biopsies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Alkoholberusning är en av de starkaste riskfaktorerna för aggressivt beteende. Alla individer blir dock inte aggressiva under alkoholberusning. I sin doktorsavhandling undersökte Johansson ifall individens genetiska uppsättning kan förklara skillnader i vem som reagerar på alkohol med ökat aggressivt beteende och ilska och vem som inte gör det. Resultaten visade att individer som är bärare av en viss variant av genen som kodar för oxytocinets receptorer är i högre grad benägna att uppvisa aggressivt beteende än andra när de är alkoholberusade. Sambandet mellan alkohol och ilska påverkades även av individens genetiska uppsättning av två oxytocinreceptorgenvarianter, vilket antyder att dessa genvarianter även påverkar benägenheten att känna ilska under alkoholberusning. Oxytocinet, som fungerar både som ett hormon och en neurotransmittor, har i tidigare studier visats ha breda effekter på sociala förmågor hos människan, såsom förmåga till igenkännande av andras känslouttryck. Resultaten är de första att hos människan experimentellt påvisa att vissa individer beter sig mer aggressivt än andra när de är berusade, beroende på individens genetiska uppsättning. ”Det är viktigt att komma ihåg att genens effekt i det här fallet inte är av en sådan natur att den direkt och ofrånkomligen orsakar aggressivt beteende. Med andra ord är det orimligt i detta fall att tänka att en individ skulle tillmätas ansvarsfrihet i exempelvis ett våldsbrottmål om hon bär på en viss variant av denna gen”, påpekar Johansson. Oxytocinreceptorgenens effekter analyserades i två olika urval. I ett experimentellt upplägg indelades 116 män slumpässigt i två grupper: en grupp som tilldelades alkoholhaltiga drycker, och en kontrollgrupp som tilldelades alkoholfria drycker. Aggressivt beteende mättes med ett laboratorietest där försökspersonerna fick bestraffa en fiktiv motspelare genom att spela upp motbjudande ljud för denne. Resultaten replikerades i ett populationsbaserat urval av män och kvinnor (n = 3755) vilka besvarat frågor om deras aggressiva beteenden, ilska, och alkoholanvändning.