9 resultados para CALCULATED OSCILLATOR-STRENGTHS
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Selostus: Paljasjyväinen kaura uutena viljelykasvina Suomen kasvuoloissa
Resumo:
Objective: The psychometric properties of The Strengths and Difficulties Questionnaire (SDQ-Fin), a Finnish version of a brief screening instrument were studied. Emotional and behavioural problems of 7- to 15-year-olds measured by the SDQ were reported, as well as the occurrence of self-reported eating disturbance symptoms and alcohol use among adolescents. Methods and samples: The cross-sectional school survey included 25 items of the SDQ-Fin, items about eating disturbance, alchol use and child psychiatric help-seeking. The study consists of three community samples: 1. The SDQ-Fin parent (n = 703) and teacher (n = 376) versions of 7 – 12 –year-olds, and self-report versions (n = 528) of 11 – 16 years-olds were obtained, and 2. the parent (n = 81) and self-report versions of 15-16 –year olds (n = 129) were obtained in Laitila and Pyhäranta. 3. The self-report versions of 13 – 16 – year-olds (n = 1458) in Salo and Rovaniemi were obtained. Results: The psychometric properties of the SDQ-Fin were for the most part comparable with the other European SDQ research results. The internal consistency (Cronbach’s alpha = 0.71 in all informants’ reports) and inter-rater reliability (between the pairs of reports r = 0.38 - 0.44) were adequate. The concurrent validity (r = 0.75 between the SDQ and the CBCL total scores; r = 0.71 between the SDQ and the YSR total scores) was sufficient. Factor analysis of the SDQ self-report generally confirmed the postulated structure for girls and boys, except for the conduct problems scale of boys, which was fused with emotional symptoms and with hyperactivity. The response rates, means and cut-off points of the SDQ self-report scores were similar to those found, e.g. in Norway and in Britain. A high level of psychological problems, especially emotional and conduct problems and hyperactivity-inattention, were associated with high level of eating disturbance symptoms and alcohol use. Conclusion: The results showed that the psychometric properties of the SDQ-Fin are adequate and provide additional confirmation of the usefulness of the SDQ-Fin for, e.g. screening, epidemiological research and clinical purposes.
Resumo:
In many industrial applications, accurate and fast surface reconstruction is essential for quality control. Variation in surface finishing parameters, such as surface roughness, can reflect defects in a manufacturing process, non-optimal product operational efficiency, and reduced life expectancy of the product. This thesis considers reconstruction and analysis of high-frequency variation, that is roughness, on planar surfaces. Standard roughness measures in industry are calculated from surface topography. A fast and non-contact method to obtain surface topography is to apply photometric stereo in the estimation of surface gradients and to reconstruct the surface by integrating the gradient fields. Alternatively, visual methods, such as statistical measures, fractal dimension and distance transforms, can be used to characterize surface roughness directly from gray-scale images. In this thesis, the accuracy of distance transforms, statistical measures, and fractal dimension are evaluated in the estimation of surface roughness from gray-scale images and topographies. The results are contrasted to standard industry roughness measures. In distance transforms, the key idea is that distance values calculated along a highly varying surface are greater than distances calculated along a smoother surface. Statistical measures and fractal dimension are common surface roughness measures. In the experiments, skewness and variance of brightness distribution, fractal dimension, and distance transforms exhibited strong linear correlations to standard industry roughness measures. One of the key strengths of photometric stereo method is the acquisition of higher frequency variation of surfaces. In this thesis, the reconstruction of planar high-frequency varying surfaces is studied in the presence of imaging noise and blur. Two Wiener filterbased methods are proposed of which one is optimal in the sense of surface power spectral density given the spectral properties of the imaging noise and blur. Experiments show that the proposed methods preserve the inherent high-frequency variation in the reconstructed surfaces, whereas traditional reconstruction methods typically handle incorrect measurements by smoothing, which dampens the high-frequency variation.
Resumo:
Erilaiset sterilointitarpeet ovat olennainen osa biotekniikkaa. Steriloinnit ovat huomattava kuluerä energia-, materiaali- ja laitekäyttöjen takia ja puutteellinen sterilointi voi aiheuttaa huomattavia ylimääräisiä kustannuksia. Eniten teollisesti käytettäviä sterilointimenetelmiä ovat steriilisuodatus, lämpösterilointi, kemiallinen sterilointi ja säteilysterilointi. Näistä lämpösterilointi on selvästi käytetyin menetelmä. Kirjallisuusosassa käsitellään lämpösteriloinnin kinetiikka ja sterilointityön laskentaan käytetyt menetelmät. Lämpösteriloinnin kinetiikka on mikrobista ja sen olomuodosta riippuvainen ja noudattaa Arrheniuksen lakia. Kirjallisuusosassa käsitellään myös lämpösterilointiin käytettyjä laitteistoja. Soveltavassa osassa käsitellään panos- ja jatkuvatoimia lämpösterilointeja. Työssä käydään läpi glukoosisiirapin sterilointi vastaavan kapasiteetin panos- ja jatkuvatoimisella sterilointilaitteistolla ja vertaillaan tarvittavia energia- ja hyödykemääriä. Soveltavan osan tietojen perusteella tehdään vertailu eri lämpösterilointimenetelmien kustannuksista sekä muista hyvistä ja huonoista puolista.
Resumo:
Tässä työssä on tutkittu OL1/OL2-ydinvoimalaitosten käytetyn polttoaineen siirrossa aiheutuvaa altistusta neutronisäteilylle. Käytetty polttoaine siirretään vedellä täytetyssä käytetyn polttoaineen siirtosäiliössä Castor TVO:ssa OL1/OL2-laitoksilta käytetyn polttoaineen varastolle. Siirtotyön aikana useat eri ammattiryhmiin kuuluvat henkilöt työskentelevät siirtosäiliön välittömässä läheisyydessä, altistuen käytetystä polttoaineesta emittoituvalle fotoni- ja neutronisäteilylle. Aikaisemmista neutronisäteilyannosten mittauksista on todettu, ettei jatkuvalle altistuksen seurannalle ole ollut tarvetta. Tämän työn tarkoitus on selvittää teoreettisilla laskelmilla siirtotyöhön osallistuvan henkilön mahdollisuus saada kirjausrajan ylittävä annos neutronisäteilyä. Neutronisäteilyn annosnopeudet siirtosäiliötä ympäröivässä tilassa on laskettu yhdysvaltalaisella Monte Carlo-menetelmään perustuvalla MCNP-ohjelmalla. MCNP:llä mallinnettiin siirtosäiliö, siirtosäiliön sisältämä polttoaine ja ympäröivä tila kolmella jäähtymisajalla ja kolmella keskimääräisellä maksimipoistopalamalla. Polttoainenippujen isotooppikonsentraatiot ja säteilylähteiden voimakkuudet on laskettu Studsvik SNF-ohjelmalla. Simuloinnin perusteella voidaan todeta, ettei neutronisäteilyannosten jatkuvalle seurannalle ole tarvetta käytetyn polttoaineen siirrossa. Vaikka neutronisäteilyn annosnopeudet voivat nousta siirtosäiliön läheisyydessä suhteellisen suuriksi, ovat siirtosäiliön lähellä tehtävät työt niin lyhytaikaisia, että kirjausrajan ylitystä voidaan pitää hyvin epätodennäköisenä. Johtopäätökset varmistetaan työssä suunnitellulla mittausjärjestelyllä.
Resumo:
Kartta kuuluu A. E. Nordenskiöldin kokoelmaan
Resumo:
In this work we look at two different 1-dimensional quantum systems. The potentials for these systems are a linear potential in an infinite well and an inverted harmonic oscillator in an infinite well. We will solve the Schrödinger equation for both of these systems and get the energy eigenvalues and eigenfunctions. The solutions are obtained by using the boundary conditions and numerical methods. The motivation for our study comes from experimental background. For the linear potential we have two different boundary conditions. The first one is the so called normal boundary condition in which the wave function goes to zero on the edge of the well. The second condition is called derivative boundary condition in which the derivative of the wave function goes to zero on the edge of the well. The actual solutions are Airy functions. In the case of the inverted oscillator the solutions are parabolic cylinder functions and they are solved only using the normal boundary condition. Both of the potentials are compared with the particle in a box solutions. We will also present figures and tables from which we can see how the solutions look like. The similarities and differences with the particle in a box solution are also shown visually. The figures and calculations are done using mathematical software. We will also compare the linear potential to a case where the infinite wall is only on the left side. For this case we will also show graphical information of the different properties. With the inverted harmonic oscillator we will take a closer look at the quantum mechanical tunneling. We present some of the history of the quantum tunneling theory, its developers and finally we show the Feynman path integral theory. This theory enables us to get the instanton solutions. The instanton solutions are a way to look at the tunneling properties of the quantum system. The results are compared with the solutions of the double-well potential which is very similar to our case as a quantum system. The solutions are obtained using the same methods which makes the comparison relatively easy. All in all we consider and go through some of the stages of the quantum theory. We also look at the different ways to interpret the theory. We also present the special functions that are needed in our solutions, and look at the properties and different relations to other special functions. It is essential to notice that it is possible to use different mathematical formalisms to get the desired result. The quantum theory has been built for over one hundred years and it has different approaches. Different aspects make it possible to look at different things.
Resumo:
In this work we look at two different 1-dimensional quantum systems. The potentials for these systems are a linear potential in an infinite well and an inverted harmonic oscillator in an infinite well. We will solve the Schrödinger equation for both of these systems and get the energy eigenvalues and eigenfunctions. The solutions are obtained by using the boundary conditions and numerical methods. The motivation for our study comes from experimental background. For the linear potential we have two different boundary conditions. The first one is the so called normal boundary condition in which the wave function goes to zero on the edge of the well. The second condition is called derivative boundary condition in which the derivative of the wave function goes to zero on the edge of the well. The actual solutions are Airy functions. In the case of the inverted oscillator the solutions are parabolic cylinder functions and they are solved only using the normal boundary condition. Both of the potentials are compared with the particle in a box solutions. We will also present figures and tables from which we can see how the solutions look like. The similarities and differences with the particle in a box solution are also shown visually. The figures and calculations are done using mathematical software. We will also compare the linear potential to a case where the infinite wall is only on the left side. For this case we will also show graphical information of the different properties. With the inverted harmonic oscillator we will take a closer look at the quantum mechanical tunneling. We present some of the history of the quantum tunneling theory, its developers and finally we show the Feynman path integral theory. This theory enables us to get the instanton solutions. The instanton solutions are a way to look at the tunneling properties of the quantum system. The results are compared with the solutions of the double-well potential which is very similar to our case as a quantum system. The solutions are obtained using the same methods which makes the comparison relatively easy. All in all we consider and go through some of the stages of the quantum theory. We also look at the different ways to interpret the theory. We also present the special functions that are needed in our solutions, and look at the properties and different relations to other special functions. It is essential to notice that it is possible to use different mathematical formalisms to get the desired result. The quantum theory has been built for over one hundred years and it has different approaches. Different aspects make it possible to look at different things.