45 resultados para Brane Dynamics in Gauge Theories

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis contains dynamical analysis on four different scales: the Solar system, the Sun itself, the Solar neighbourhood, and the central region of the Milky Way galaxy. All of these topics have been handled through methods of potential theory and statistics. The central topic of the thesis is the orbits of stars in the Milky Way. An introduction into the general structure of the Milky Way is presented, with an emphasis on the evolution of the observed value for the scale-length of the Milky Way disc and the observations of two separate bars in the Milky Way. The basics of potential theory are also presented, as well as a developed potential model for the Milky Way. An implementation of the backwards restricted integration method is shown, rounding off the basic principles used in the dynamical studies of this thesis. The thesis looks at the orbit of the Sun, and its impact on the Oort cloud comets (Paper IV), showing that there is a clear link between these two dynamical systems. The statistical atypicalness of the orbit of the Sun is questioned (Paper I), concluding that there is some statistical typicalness to the orbit of the Sun, although it is not very significant. This does depend slightly on whether one includes a bar, or not, as a bar has a clear effect on the dynamical features seen in the Solar neighbourhood (Paper III). This method can be used to find the possible properties of a bar. Finally, we look at the effect of a bar on a statistical system in the Milky Way, seeing that there are not only interesting effects depending on the mass and size of the bar, but also how bars can capture disc stars (Paper II).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to simulate blood flow in thoracic human aorta and understand the role of flow dynamics in the initialization and localization of atherosclerotic plaque in human thoracic aorta. The blood flow dynamics in idealized and realistic models of human thoracic aorta were numerically simulated in three idealized and two realistic thoracic aorta models. The idealized models of thoracic aorta were reconstructed with measurements available from literature, and the realistic models of thoracic aorta were constructed by image processing Computed Tomographic (CT) images. The CT images were made available by South Karelia Central Hospital in Lappeenranta. The reconstruction of thoracic aorta consisted of operations, such as contrast adjustment, image segmentations, and 3D surface rendering. Additional design operations were performed to make the aorta model compatible for the numerical method based computer code. The image processing and design operations were performed with specialized medical image processing software. Pulsatile pressure and velocity boundary conditions were deployed as inlet boundary conditions. The blood flow was assumed homogeneous and incompressible. The blood was assumed to be a Newtonian fluid. The simulations with idealized models of thoracic aorta were carried out with Finite Element Method based computer code, while the simulations with realistic models of thoracic aorta were carried out with Finite Volume Method based computer code. Simulations were carried out for four cardiac cycles. The distribution of flow, pressure and Wall Shear Stress (WSS) observed during the fourth cardiac cycle were extensively analyzed. The aim of carrying out the simulations with idealized model was to get an estimate of flow dynamics in a realistic aorta model. The motive behind the choice of three aorta models with distinct features was to understand the dependence of flow dynamics on aorta anatomy. Highly disturbed and nonuniform distribution of velocity and WSS was observed in aortic arch, near brachiocephalic, left common artery, and left subclavian artery. On the other hand, the WSS profiles at the roots of branches show significant differences with geometry variation of aorta and branches. The comparison of instantaneous WSS profiles revealed that the model with straight branching arteries had relatively lower WSS compared to that in the aorta model with curved branches. In addition to this, significant differences were observed in the spatial and temporal profiles of WSS, flow, and pressure. The study with idealized model was extended to study blood flow in thoracic aorta under the effects of hypertension and hypotension. One of the idealized aorta models was modified along with the boundary conditions to mimic the thoracic aorta under the effects of hypertension and hypotension. The results of simulations with realistic models extracted from CT scans demonstrated more realistic flow dynamics than that in the idealized models. During systole, the velocity in ascending aorta was skewed towards the outer wall of aortic arch. The flow develops secondary flow patterns as it moves downstream towards aortic arch. Unlike idealized models, the distribution of flow was nonplanar and heavily guided by the artery anatomy. Flow cavitation was observed in the aorta model which was imaged giving longer branches. This could not be properly observed in the model with imaging containing a shorter length for aortic branches. The flow circulation was also observed in the inner wall of the aortic arch. However, during the diastole, the flow profiles were almost flat and regular due the acceleration of flow at the inlet. The flow profiles were weakly turbulent during the flow reversal. The complex flow patterns caused a non-uniform distribution of WSS. High WSS was distributed at the junction of branches and aortic arch. Low WSS was distributed at the proximal part of the junction, while intermedium WSS was distributed in the distal part of the junction. The pulsatile nature of the inflow caused oscillating WSS at the branch entry region and inner curvature of aortic arch. Based on the WSS distribution in the realistic model, one of the aorta models was altered to induce artificial atherosclerotic plaque at the branch entry region and inner curvature of aortic arch. Atherosclerotic plaque causing 50% blockage of lumen was introduced in brachiocephalic artery, common carotid artery, left subclavian artery, and aortic arch. The aim of this part of the study was first to study the effect of stenosis on flow and WSS distribution, understand the effect of shape of atherosclerotic plaque on flow and WSS distribution, and finally to investigate the effect of lumen blockage severity on flow and WSS distributions. The results revealed that the distribution of WSS is significantly affected by plaque with mere 50% stenosis. The asymmetric shape of stenosis causes higher WSS in branching arteries than in the cases with symmetric plaque. The flow dynamics within thoracic aorta models has been extensively studied and reported here. The effects of pressure and arterial anatomy on the flow dynamic were investigated. The distribution of complex flow and WSS is correlated with the localization of atherosclerosis. With the available results we can conclude that the thoracic aorta, with complex anatomy is the most vulnerable artery for the localization and development of atherosclerosis. The flow dynamics and arterial anatomy play a role in the localization of atherosclerosis. The patient specific image based models can be used to diagnose the locations in the aorta vulnerable to the development of arterial diseases such as atherosclerosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present manuscript represents the completion of a research path carried forward during my doctoral studies in the University of Turku. It contains information regarding my scientific contribution to the field of open quantum systems, accomplished in collaboration with other scientists. The main subject investigated in the thesis is the non-Markovian dynamics of open quantum systems with focus on continuous variable quantum channels, e.g. quantum Brownian motion models. Non-Markovianity is here interpreted as a manifestation of the existence of a flow of information exchanged by the system and environment during the dynamical evolution. While in Markovian systems the flow is unidirectional, i.e. from the system to the environment, in non-Markovian systems there are time windows in which the flow is reversed and the quantum state of the system may regain coherence and correlations previously lost. Signatures of a non-Markovian behavior have been studied in connection with the dynamics of quantum correlations like entanglement or quantum discord. Moreover, in the attempt to recognisee non-Markovianity as a resource for quantum technologies, it is proposed, for the first time, to consider its effects in practical quantum key distribution protocols. It has been proven that security of coherent state protocols can be enhanced using non-Markovian properties of the transmission channels. The thesis is divided in two parts: in the first part I introduce the reader to the world of continuous variable open quantum systems and non-Markovian dynamics. The second part instead consists of a collection of five publications inherent to the topic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis the dynamics of cold gaseous atoms is studied. Two different atomic species and two different experimental techniques have been used. In the first part of the thesis experiments with Bose-Einstein condensates of Rb-87 are presented. In these experiments the methods of laser cooling and magnetic trapping of atoms were utilized. An atom chip was used as the experimental technique for implementation of magnetic trapping. The atom chip is a small integrated instrument allowing accurate and detailed manipulation of the atoms. The experiments with Rb-87 probed the behaviour of a falling beam of atoms outcoupled from the Bose-Einstein condensate by electromagnetic field induced spin flips. In the experiments a correspondence between the phases of the outcoupling radio frequency field and the falling beam of atoms was found. In the second part of the thesis experiments of spin dynamics in cold atomic hydrogen gas are discussed. The experiments with atomic hydrogen are conducted in a cryostat using a dilution refrigerator as the cooling method. These experiments concentrated on explaining and quantifying modulations in the electron spin resonance spectra of doubly polarized atomic hydrogen. The modifications to the previous experimental setup are described and the observation of electron spin waves is presented. The observed spin wave modes were caused by the identical spin rotation effect. These modes have a strong dependence on the spatial profile of the polarizing magnetic field. We also demonstrated confinement of these modes in regions of strong magnetic field and manipulated their spatial distribution by changing the position of the field maximum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solceller presenteras ofta som ett miljövänligt alternativ för energiproduktion. Det största hindret för en bredare ibruktagning av kiselbaserade solceller är deras höga pris. I och med upptäckten av ledande och halvledande organiska (kolbaserade) molekyler och polymerer har ett nytt forskningsområde, organisk elektronik, vuxit fram. Den stora fördelen med organisk elektronik är att de använda materialen oftast är lösliga. Tillverkning av elektroniska komponenter kan då göras med hjälp av konventionella trycktekniker där bläcket ersatts med upplösta organiska material. Detta har potential att betydligt sänka priset för solceller. Nackdelen med organisk elektronik är att de använda materialen är komplexa, och de fysikaliska processerna i dem likaså. I min avhandling har jag studerat fotofysiken i två polymerer, P3HT och APFO3, som kan användas för att tillverka organiska solceller. Blandade med fullerenderivatet PCBM, som är en stark elektronacceptor, fås ett material som effektivt producerar elektroner och hål under belysning. I praktiken bidrar dock inte alla skapade laddningar till strömmen ur solcellen. Elektronerna och hålen kan förbli bundna till varandra i olika exciterade tillstånd, och även de som är fria kan träffa på motsatta laddningar under vägen till kontakterna och rekombinera. Centralt i mitt arbete har varit att identifiera olika typer av exciterade tillstånd i dessa solcellsmaterial, samt att bestämma deras livstider och rekombination. Metoden för detta har varit s.k. fotoinducerad absorption, som mäter fotoexcitationernas absorptioner i infraröda våglängdsområdet. De två viktigaste resultaten som presenteras i avhandlingen är en ratekvationsmodell för fotoexcitationsdynamiken i APFO3 på ultrasnabba tidsskalor (femtosekund - microsekund) och bildandet av en rekombinationshämmande dipol vid gränsytan för P3HT och PCBM som följd av värmebehandling. Dessa resultat bidrar till förståelsen av de fotofysikaliska processerna i relaterade material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Connectivity depends on rates of dispersal between communities. For marine soft-sediment communities continued small-scale dispersal as post-larvae and as adults can be equally important in maintaining community composition, as initial recruitment of substrate by pelagic larvae. In this thesis post-larval dispersal strategies of benthic invertebrates, as well as mechanisms by which communities are connected were investigated. Such knowledge on dispersal is scarce, due to the difficulties in actually measuring dispersal directly in nature, and dispersal has not previously been quantified in the Baltic Sea. Different trap-types were used underwater to capture dispersing invertebrates at different sites, while in parallel measuring waves and currents. Local community composition was found to change predictably under varying rates of dispersal and physical connectivity (waves and currents). This response was, however, dependent on dispersal-related traits of taxa. Actively dispersing taxa will be relatively better at maintaining their position, as they are not as dependent on hydrodynamic conditions for dispersal and will be less prone to be passively transported by currents. Taxa also dispersed in relative proportions that were distinctly different from resident community composition and a significant proportion (40 %) of taxa were found to lack a planktonic larval life-stage. Community assembly was re-started in a large-scale manipulative field experiment over one year across several sites, which revealed how patterns of community composition (α-, β- and λ-diversity) change depending on rates of dispersal. Results also demonstrated that in response to small-scale disturbance, initial recruitment was by nearby-dominant species after which other species arrived from successively further away. At later assembly time, the number of coexisting species increased beyond what was expected purely by local niche requirements (species sorting), transferring regional differences in community composition (β-diversity) to the local scale (α-diversity, mass effect). Findings of this thesis complement more theoretical studies in metacommunity ecology by demonstrating that understanding how and when individuals disperse relative to underlying environmental heterogeneity is key to interpreting how patterns of diversity change across different spatial scales. Such information from nature is critical when predicting responses to, for example, different types of disturbances or management actions in conservation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pulp and paper industry is currently facing broad structural changes due to global shifts in demand and supply. These changes have significant impacts on national economies worldwide. Planted forests (especially eucalyptus) and recovered paper have quickly increased their importance as raw material for paper and paperboard production. Although advances in information and communication technologies could reduce the demand for communication papers, and the growth of paper consumption has indeed flattened in developed economies, particularly in North America and Western Europe, the consumption is increasing on a global scale. Moreover, the focal point of production and consumption is moving from the Western world to the rapidly growing markets of Southeast Asia. This study analyzes how the so-called megatrends (globalization, technological development, and increasing environmental awareness) affect the pulp and paper industry’s external environment, and seeks reliable ways to incorporate the impact of the megatrends on the models concerning the demand, trade, and use of paper and pulp. The study expands current research in several directions and points of view, for example, by applying and incorporating several quantitative methods and different models. As a result, the thesis makes a significant contribution to better understand and measure the impacts of structural changes on the pulp and paper industry. It also provides some managerial and policy implications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantum computation and quantum communication are two of the most promising future applications of quantum mechanics. Since the information carriers used in both of them are essentially open quantum systems it is necessary to understand both quantum information theory and the theory of open quantum systems in order to investigate realistic implementations of such quantum technologies. In this thesis we consider the theory of open quantum systems from a quantum information theory perspective. The thesis is divided into two parts: review of the literature and original research. In the review of literature we present some important definitions and known results of open quantum systems and quantum information theory. We present the definitions of trace distance, two channel capacities and superdense coding capacity and give a reasoning why they can be used to represent the transmission efficiency of a communication channel. We also show derivations of some properties useful to link completely positive and trace preserving maps to trace distance and channel capacities. With the help of these properties we construct three measures of non-Markovianity and explain why they detect non-Markovianity. In the original research part of the thesis we study the non-Markovian dynamics in an experimentally realized quantum optical set-up. For general one-qubit dephasing channels we calculate the explicit forms of the two channel capacities and the superdense coding capacity. For the general two-qubit dephasing channel with uncorrelated local noises we calculate the explicit forms of the quantum capacity and the mutual information of a four-letter encoding. By using the dynamics in the experimental implementation as a set of specific dephasing channels we also calculate and compare the measures in one- and two-qubit dephasing channels and study the options of manipulating the environment to achieve revivals and higher transmission rates in superdense coding protocol with dephasing noise. Kvanttilaskenta ja kvanttikommunikaatio ovat kaksi puhutuimmista tulevaisuuden kvanttimekaniikan käytännön sovelluksista. Koska molemmissa näistä informaatio koodataan systeemeihin, jotka ovat oleellisesti avoimia kvanttisysteemejä, sekä kvantti-informaatioteorian, että avointen kvanttisysteemien tuntemus on välttämätöntä. Tässä tutkielmassa käsittelemme avointen kvanttisysteemien teoriaa kvantti-informaatioteorian näkökulmasta. Tutkielma on jaettu kahteen osioon: kirjallisuuskatsaukseen ja omaan tutkimukseen. Kirjallisuuskatsauksessa esitämme joitakin avointen kvanttisysteemien ja kvantti-informaatioteorian tärkeitä määritelmiä ja tunnettuja tuloksia. Esitämme jälkietäisyyden, kahden kanavakapasiteetin ja superdense coding -kapasiteetin määritelmät ja esitämme perustelun sille, miksi niitä voidaan käyttää kuvaamaan kommunikointikanavan lähetystehokkuutta. Näytämme myös todistukset kahdelle ominaisuudelle, jotka liittävät täyspositiiviset ja jäljensäilyttävät kuvaukset jälkietäisyyteen ja kanavakapasiteetteihin. Näiden ominaisuuksien avulla konstruoimme kolme epä-Markovisuusmittaa ja perustelemme, miksi ne havaitsevat dynamiikan epä-Markovisuutta. Oman tutkimuksen osiossa tutkimme epä-Markovista dynamiikkaa kokeellisesti toteutetussa kvanttioptisessa mittausjärjestelyssä. Yleisen yhden qubitin dephasing-kanavan tapauksessa laskemme molempien kanavakapasiteettien ja superdense coding -kapasiteetin eksplisiittiset muodot. Yleisen kahden qubitin korreloimattomien ympäristöjen dephasing-kanavan tapauksessa laskemme yhteisen informaation lausekkeen nelikirjaimisessa koodauksessa ja kvanttikanavakapasiteetin. Käyttämällä kokeellisen mittajärjestelyn dynamiikkoja esimerkki dephasing-kanavina me myös laskemme konstruoitujen epä-Markovisuusmittojen arvot ja vertailemme niitä yksi- ja kaksi-qubitti-dephasing-kanavissa. Lisäksi käyttäen kokeellisia esimerkkikanavia tutkimme, kuinka ympäristöä manipuloimalla superdense coding –skeemassa voidaan saada yhteinen informaatio ajoittain kasvamaan tai saavuttaa kaikenkaikkiaan korkeampi lähetystehokkuus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The underwater light field is an important environmental variable as it, among other things, enables aquatic primary production. Although the portion of solar radiation that is referred to as visible light penetrates water, it is restricted to a limited surface water layer because of efficient absorption and scattering processes. Based on the varying content of optical constituents in the water, the efficiency of light attenuation changes in many dimensions and over various spatial and temporal scales. This thesis discusses the underwater light dynamics of a transitional coastal archipelago in south-western Finland, in the Baltic Sea. While the area has long been known to have a highly variable underwater light field, quantified knowledge on the phenomenon has been scarce, patchy, or non-existent. This thesis focuses on the variability in the underwater light field through euphotic depths (1% irradiance remaining), which were derived from in situ measurements of vertical profiles of photosynthetically active radiation (PAR). Spot samples were conducted in the archipelago of south-western Finland, mainly during the ice-free growing seasons of 2010 and 2011. In addition to quantifying both the seasonal and geographical patterns of euphotic depth development, the need and usability of underwater light information are also discussed. Light availability was found to fluctuate in multiple dimensions and scales. The euphotic depth was shown to have combined spatio-temporal dynamics rather than separate changes in spatial and temporal dimensions. Such complexity in the underwater light field creates challenges in data collection, as well as in its utilisation. Although local information is needed, in highly variable conditions spot sampled information may only poorly represent its surroundings. Moreover, either temporally or spatially limited sampling may cause biases in understanding underwater light dynamics. Consequently, the application of light availability data, for example in ecological modelling, should be made with great caution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this Thesis various aspects of memory effects in the dynamics of open quantum systems are studied. We develop a general theoretical framework for open quantum systems beyond the Markov approximation which allows us to investigate different sources of memory effects and to develop methods for harnessing them in order to realise controllable open quantum systems. In the first part of the Thesis a characterisation of non-Markovian dynamics in terms of information flow is developed and applied to study different sources of memory effects. Namely, we study nonlocal memory effects which arise due to initial correlations between two local environments and further the memory effects induced by initial correlations between the open system and the environment. The last part focuses on describing two all-optical experiment in which through selective preparation of the initial environment states the information flow between the system and the environment can be controlled. In the first experiment the system is driven from the Markovian to the non- Markovian regime and the degree of non-Markovianity is determined. In the second experiment we observe the nonlocal nature of the memory effects and provide a novel method to experimentally quantify frequency correlations in photonic environments via polarisation measurements.