1 resultado para Bosques nativos

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

10.00% 10.00%

Publicador:

Resumo:

High elevation treelines are formed under common temperature conditions worldwide, but the functional mechanisms that ultimately constrain tree growth are poorly known. In addition to environmental constraints, the distribution of high elevation forests is largely affected by human influence. Andean Polylepis (Rosaceae) forests are an example of such a case, forests commonly growing in isolated stands disconnected from the lower elevation montane forests. There has been ample discussion as to the role of environmental versus anthropogenic causes of this fragmented distribution of Polylepis forests, but the importance of different factors is still unclear. In this thesis, I studied functional, environmental and anthropogenic aspects determining Polylepis forest distribution. Specifically, I assessed the degree of genetic determinism in the functional traits that enable Polylepis species to grow in cold and dry conditions. I also studied the role of environment and human influence constraining Polylepis forest distribution. I found evidence of genetically determined climatic adaptations in the functional traits of Polylepis. High elevation species had reduced leaf size and increased root tip abundance compared to low elevation species. Thus these traits have potentially played an important role in species evolution and adaptation to high elevation habitats, especially to low temperatures. I also found reduced photosynthesis rate among high elevation tree species compared to low elevation species, supporting carbon source limitation at treelines. At low elevations, Polylepis forest distribution appeared to be largely defined by human influence. This suggests that the absence of Polylepis forests in large areas in the Andes is the result of several environmental and anthropogenic constraints, the role of environment becoming stronger towards high elevations. I also show that Polylepis trees grow at remarkably low air and soil temperatures near treelines, and present new evidence of the role of air temperatures in constraining tree growth at high elevations. I further show that easily measurable indices of accessibility are related to the degree of degradation of Polylepis forest, and can therefore be used in the rapid identification of potentially degraded Polylepis forests. This is of great importance for the conservation and restoration planning of Polylepis forests in the Andes. In a global context, the results of this thesis add to our scientific knowledge concerning high elevation adaptations in trees, and increase our understanding of the factors constraining tree growth and forest distribution at high-­elevation treelines worldwide.