3 resultados para Biogeochemistry of Tidal Flats
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
The overall purpose of this thesis was to increase the knowledge on the biogeochemistry of rural acid sulphate (AS) soil environments and urban forest ecosystems near small towns in Western Finland. In addition, the potential causal relationship between the distribution of AS soils and geographical occurence of multiple sclerosis (MS) disease was assessed based on a review of existing literature and data. Acid sulphate soils, which occupy an area of approximately 17–24 million hectare worldwide, are regarded as the nastiest soils in the world. Independent of the geographical locality of these soils, they pose a great threat to their surrounding environment if disturbed. The abundant metal-rich acid drainage from Finnish AS soils, which is a result of sulphide oxidation due to artificial farmland drainage, has significant but spatially and temporally variable ecotoxicological impacts on biodiversity and community structure of fish, benthic invertebrates and macrophytes. This has resulted in mass fish kills and even eradication of sensitive fish species in affected waters. Moreover, previous investigations demonstrated significantly enriched concentrations of Co, Ni, Mn and Al, metals which are abundantly mobilised in AS soils, in agricultural crops (timothy grass and oats) and approximately 50 times higher concentrations of Al in cow milk originating from AS soils in Western Finland. Nevertheless, the results presented here demonstrate, in general, relatively moderate metal concentrations in oats and cabbage grown on AS soils in Western Finland, although some of the studied fields showed anomalous values of metals (e.g. Co and Ni) in both the soil and target plants (especially oats), similar to that of the previous investigations. The results indicated that the concentrations of Co, Ni, Mn and Zn in oats and Co and Zn in cabbage were governed by soil geochemistry as these metals were correlated with corresponding concentrations extracted from the soil by NH4Ac-EDTA and NH4Ac, respectively. The concentrations of Cu and Fe in oats and cabbage were uncorrelated to that of the easily soluble concentrations in the soils, suggesting that biological processes (e.g. plant-root processes) overshadow geochemical variation. The concentrations of K and Mg in cabbage, which showed a low spread and were strongly correlated to the NH4Ac extractable contents in the soil, were governed by both the bioavailable fractions in the topsoil and plant-uptake mechanisms. The plant´s ability to regulate its uptake of Ca and P (e.g. through root exudates) seemed to be more important than the influence of soil geochemistry. The distribution of P, K, Ca, Mg, Mn and S within humus, moss and needles in and around small towns was to a high degree controlled by biological cycling, which was indicated by the low correlation coefficients for P, K, Ca, Mg and S between humus and moss, and the low spread of these nutrients in moss and needles. The concentration variations of elements in till are mainly due to natural processes (e.g. intrusions, weathering, mineralogical variations in the bedrock). There was a strong spatial pattern for B in humus, moss and needles, which was suggested to be associated with anthropogenic emissions from nearby town centres. Geogenic dust affected the spatial distribution of Fe and Cr in moss, while natural processes governed the Fe anomaly found in the needles. The spatial accumulation patterns of Zn, Cd, Cu, Ni and Pb in humus and moss were strong and diverse, and related to current industry, the former steel industry, coal combustion, and natural geochemical processes. An intriguing Cu anomaly was found in moss. Since it was located close to a main railway line and because the railway line´s electric cables are made of Cu, it was suggested that the reason for the Cu anomaly is corrosion of these cables. In Western Finland, where AS soils are particularly abundant and enrich the metal concentrations of stream waters, cow milk and to some extent crops, an environmental risk assessment would be motivated to elucidate if the metal dispersion affect human health. Within this context, a topic of concern is the distribution of multiple sclerosis as high MS prevalence rates are found in the main area of AS soils. Regionally, the AS soil type in the Seinäjoki area has been demonstrated to be very severe in terms of metal leaching, this area also shows one of the highest MS rates reported worldwide. On a local scale, these severe AS soil types coincide well with the corresponding MS clustering along the Kyrönjoki River in Seinäjoki. There are reasons to suspect that these spatial correlations are causal, as multiple sclerosis has been suggested to result from a combination of genetic and environmental factors.
Resumo:
This thesis includes detailed sedimentological and ichnological studies on two geological units: the Pebas Formation, with a special focus in its informal upper member, and the Nauta Formation. Both formations were deposited during the Miocene in Northeastern Peruvian Amazonia, in the Amazon retroarc foreland basin. The Pebas and Nauta successions mainly consist of non-consolidated, clastic sedimentary deposits arranged into sand- to mud-dominated heterolithic successions, which can be upward-coarsening to upward-fining. Sediments in both the Pebas and Nauta successions range from mud to fine- to medium-grained sand. The main facies observed were 1) mud-dominated horizontal heterolithic couplets; 2) rooted brownish mud; 3) lenticular, mud-draped, cross-stratified sand; 4) mud- to sand-dominated, inclined heterolithic stratification; 5) sand-dominated horizontal heterolithic couplets; and 6) mud-draped, trough cross-stratified sand. Locally, tidal rhythmites were documented. The facies are interpreted as: 1) muddy, shallow, subaqueous flats/shoals; 2) palaeosols; 3) secondary tidal channels or run-off creeks; 4) tidally influenced point bars; 5) shoreface deposits; and 6) subtidal compound dunes. Thalassinoides-dominated Glossifungites ichnofacies, low-diversity expressions of the Skolithos ichnofacies and depauperate suites consisting of elements common to the Cruziana ichnofacies strongly indicate brackish-water conditions. However, continental trace fossil assemblages, with possible elements common to the Scoyenia ichnofacies, have also been identified. In addition to the palaeoenvironmental study, a local hydrogeochemical characterisation of the Pebas and Nauta formations was also conducted. The geochemistry of the groundwaters reflects the characteristics and the soil geochemistry of the geological formations studied. The Pebas formation has low hardness, acid to neutral waters, whereas the upper Pebas has high hardness, acid to neutral waters. In both units, the arsenic content is locally high. The Nauta formation has low hardness acid groundwaters. A regional review of the Pebas and Nauta formations placed the local observations into a continental perspective and suggests that the whole Pebas-Nauta system was a probably shallow (some tens of metres at maximum), brackish- to freshwater, tidally-influenced epicontinental embayment with a probable semi-diurnal to mixed tidal regime and a microtidal range, surrounded by continental environments such as forest floors, lagoons, rivers and their flood plains, and lakes.
Resumo:
Rapid changes in biodiversity are occurring globally, as a consequence of anthropogenic disturbance. This has raised concerns, since biodiversity is known to significantly contribute to ecosystem functions and services. Marine benthic communities participate in numerous functions provided by soft-sedimentary ecosystems. Eutrophication-induced oxygen deficiency is a growing threat against infaunal communities, both in open sea areas and in coastal zones. There is thus a need to understand how such disturbance affects benthic communities, and what is lost in terms of ecosystem functioning if benthic communities are harmed. In this thesis, the status of benthic biodiversity was assessed for the open Baltic Sea, a system severely affected by broad-scale hypoxia. Long-term monitoring data made it possible to establish quantitative biodiversity baselines against which change could be compared. The findings show that benthic biodiversity is currently severely impaired in large areas of the open Baltic Sea, from the Bornholm Basin to the Gulf of Finland. The observed reduction in biodiversity indicates that benthic communities are structurally and functionally impoverished in several of the sub-basins due to the hypoxic stress. A more detailed examination of disturbance impacts (through field studies and -experiments) on benthic communities in coastal areas showed that changes in benthic community structure and function took place well before species were lost from the system. The degradation of benthic community structure and function was directed by the type of disturbance, and its specific temporal and spatial characteristics. The observed shifts in benthic trait composition were primarily the result of reductions in species’ abundances, or of changes in demographic characteristics, such as the loss of large, adult bivalves. Reduction in community functions was expressed as declines in the benthic bioturbation potential and in secondary biomass production. The benthic communities and their degradation accounted for a substantial proportion of the changes observed in ecosystem multifunctionality. Individual ecosystem functions (i.e. measures of sediment ecosystem metabolism, elemental cycling, biomass production, organic matter transformation and physical structuring) were observed to differ in their response to increasing hypoxic disturbance. Interestingly, the results suggested that an impairment of ecosystem functioning could be detected at an earlier stage if multiple functions were considered. Importantly, the findings indicate that even small-scale hypoxic disturbance can reduce the buffering capacity of sedimentary ecosystem, and increase the susceptibility of the system towards further stress. Although the results of the individual papers are context-dependent, their combined outcome implies that healthy benthic communities are important for sustaining overall ecosystem functioning as well as ecosystem resilience in the Baltic Sea.