28 resultados para Bilinear spatio-temporal basis model
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Ceramides comprise a class of sphingolipids that exist only in small amounts in cellular membranes, but which have been associated with important roles in cellular signaling processes. The influences that ceramides have on the physical properties of bilayer membranes reach from altered thermodynamical behavior to significant impacts on the molecular order and lateral distribution of membrane lipids. Along with the idea that the membrane physical state could influence the physiological state of a cell, the membrane properties of ceramides have gained increasing interest. Therefore, membrane phenomena related to ceramides have become a subject of intense study both in cellular as well as in artificial membranes. Artificial bilayers, the so called model membranes, are substantially simpler in terms of contents and spatio-temporal variation than actual cellular membranes, and can be used to give detailed information about the properties of individual lipid species in different environments. This thesis focuses on investigating how the different parts of the ceramide molecule, i.e., the N-linked acyl chain, the long-chain sphingoid base and the membrane-water interface region, govern the interactions and lateral distribution of these lipids in bilayer membranes. With the emphasis on ceramide/sphingomyelin(SM)-interactions, the relevance of the size of the SMhead group for the interaction was also studied. Ceramides with methylbranched N-linked acyl chains, varying length sphingoid bases, or methylated 2N (amide-nitrogen) and 3O (C3-hydroxyl) at the interface region, as well as SMs with decreased head group size, were synthesized and their bilayer properties studied by calorimetric and fluorescence spectroscopic techniques. In brief, the results showed that the packing of the ceramide acyl chains was more sensitive to methyl-branching in the mid part than in the distal end of the N-linked chain, and that disrupting the interfacial structure at the amide-nitrogen, as opposed to the C3-hydroxyl, had greater effect on the interlipid interactions of ceramides. Interestingly, it appeared that the bilayer properties of ceramides could be more sensitive to small alterations in the length of the long-chain base than what was previously reported for the N-linked acyl chain. Furthermore, the data indicated that the SM-head group does not strongly influence the interactions between SMs and ceramides. The results in this thesis illustrate the pivotal role of some essential parts of the ceramide molecules in determining their bilayer properties. The thesis provides increased understanding of the molecular aspects of ceramides that possibly affect their functions in biological membranes, and could relate to distinct effects on cell physiology.
Resumo:
Successful management of rivers requires an understanding of the fluvial processes that govern them. This, in turn cannot be achieved without a means of quantifying their geomorphology and hydrology and the spatio-temporal interactions between them, that is, their hydromorphology. For a long time, it has been laborious and time-consuming to measure river topography, especially in the submerged part of the channel. The measurement of the flow field has been challenging as well, and hence, such measurements have long been sparse in natural environments. Technological advancements in the field of remote sensing in the recent years have opened up new possibilities for capturing synoptic information on river environments. This thesis presents new developments in fluvial remote sensing of both topography and water flow. A set of close-range remote sensing methods is employed to eventually construct a high-resolution unified empirical hydromorphological model, that is, river channel and floodplain topography and three-dimensional areal flow field. Empirical as well as hydraulic theory-based optical remote sensing methods are tested and evaluated using normal colour aerial photographs and sonar calibration and reference measurements on a rocky-bed sub-Arctic river. The empirical optical bathymetry model is developed further by the introduction of a deep-water radiance parameter estimation algorithm that extends the field of application of the model to shallow streams. The effect of this parameter on the model is also assessed in a study of a sandy-bed sub-Arctic river using close-range high-resolution aerial photography, presenting one of the first examples of fluvial bathymetry modelling from unmanned aerial vehicles (UAV). Further close-range remote sensing methods are added to complete the topography integrating the river bed with the floodplain to create a seamless high-resolution topography. Boat- cart- and backpack-based mobile laser scanning (MLS) are used to measure the topography of the dry part of the channel at a high resolution and accuracy. Multitemporal MLS is evaluated along with UAV-based photogrammetry against terrestrial laser scanning reference data and merged with UAV-based bathymetry to create a two-year series of seamless digital terrain models. These allow the evaluation of the methodology for conducting high-resolution change analysis of the entire channel. The remote sensing based model of hydromorphology is completed by a new methodology for mapping the flow field in 3D. An acoustic Doppler current profiler (ADCP) is deployed on a remote-controlled boat with a survey-grade global navigation satellite system (GNSS) receiver, allowing the positioning of the areally sampled 3D flow vectors in 3D space as a point cloud and its interpolation into a 3D matrix allows a quantitative volumetric flow analysis. Multitemporal areal 3D flow field data show the evolution of the flow field during a snow-melt flood event. The combination of the underwater and dry topography with the flow field yields a compete model of river hydromorphology at the reach scale.
Resumo:
Global climate change and intentional climate modification, i.e. geoengineering include various ethical problems which are entangled as a complex ensemble of questions regarding the future of the biosphere. The possibilities of catastrophic effects of climate change which are also called “climate emergency” have led to the emergence of the idea of modifying the atmospheric conditions in the form of geoengineering. The novel issue of weather ethics is a subdivision of climate ethics, and it is interested in ethical and political questions surrounding weather and climate control and modification in a restricted spatio-temporal scale. The objective of geoengineering is to counterbalance the adverse effects of climate change and its diverse corollaries in various ways on a large scale. The claim of this dissertation is that there are ethical justifications to claim that currently large-scale interventions to the climate system are ethically questionable. The justification to pursue geoengineering on the basis of considering its pros and cons, is inadequate. Moral judgement can still be elaborated in cases where decisions have to be made urgently and the selection of desirable choices is severely limited. The changes needed to avoid severe negative impacts of climate change requires commitment to mitigation as well as social changes because technical solutions cannot address the issue of climate change altogether. The quantitative emphasis of consumerism should shift to qualitative focus on the aspiration for simplicity in order to a move towards the objective of the continuation of the existence of humankind and a flourishing, vital biosphere.
Resumo:
Stable isotope fractionation analysis of contaminants is a promising method for assessing biodegradation of contaminants in natural systems. However, standard procedures to determine stable isotope fractionation factors, so far, neglect the influence of pollutant bioavailability on stable isotope fractionation. On a microscale, bioavailability may vary due to the spatio-temporal variability of local contaminant concentrations, limited effective diffusivities of the contaminants and cell densities, and thus, the pollutant supply might not meet the intrinsic degradation capacity of the microorganisms. The aim of this study was to demonstrate the effect of bioavailability on the apparent stable isotope fractionation, using a multiphase laboratory setup. The data gained show that the apparent isotope fractionation factors observed during biodegradation processes depend on the amount of biomass and/or the rate of toluene mass transfer from a second to the aqueous phase. They indicate that physico-chemical processes need to be taken into account when stable isotope fractionation analysis is used for the quantification of environmental contaminant degradation.
Resumo:
Chondrogenesis is a co-ordinated differentiation process in which mesenchymal cells condensate, differentiate into chondrocytes and begin to secrete molecules that form the extracellular matrix. It is regulated in a spatio-temporal manner by cellular interactions and growth and differentiation factors that modulate cellular signalling pathways and transcription of specific genes. Moreover, post-transcriptional regulation by microRNAs (miRNAs) has appeared to play a central role in diverse biological processes, but their role in skeletal development is not fully understood. Mesenchymal stromal cells (MSCs) are multipotent cells present in a variety of adult tissues, including bone marrow and adipose tissue. They can be isolated, expanded and, under defined conditions, induced to differentiate into multiple cell lineages including chondrocytes, osteoblasts and adipocytes in vitro and in vivo. Owing to their intrinsic capability to self-renew and differentiate into functional cell types, MSCs provide a promising source for cell-based therapeutic strategies for various degenerative diseases, such as osteoarthritis (OA). Due to the potential therapeutic applications, it is of importance to better understand the MSC biology and the regulatory mechanisms of their differentiation. In this study, an in vitro assay for chondrogenic differentiation of mouse MSCs (mMSCs) was developed for the screening of various factors for their chondrogenic potential. Conditions were optimized for pellet cultures by inducing mMSC with different bone morphogenetic proteins (BMPs) that were selected based on their known chondrogenic relevance. Characterization of the surface epitope profile, differentiation capacity and molecular signature of mMSCs illustrated the importance of cell population composition and the interaction between different populations in the cell fate determination and differentiation of MSCs. Regulation of Wnt signalling activity by Wnt antagonist sFRP-1 was elucidated as a potential modulator of lineage commitment. Delta-like 1 (dlk1), a factor regulating adipogenesis and osteogenesis, was shown to exhibit stage-specific expression during embryonic chondrogenesis and identified as a novel regulator of chondrogenesis, possibly through mediating the effect of TGF-beta1. Moreover, miRNA profiling demonstrated that MSCs differentiating into a certain lineage exhibit a specific miRNA expression profile. The complex regulatory network between miRNAs and transcription factors is suggested to play a crucial role in fine-tuning the differentiation of MSCs. These results demonstrate that commitment of mesenchymal stromal cells and further differentiation into specific lineages is regulated by interactions between MSCs, various growth and transcription factors, and miRNA-mediated translational repression of lineage-specific genes.
Resumo:
In this thesis, the suitability of different trackers for finger tracking in high-speed videos was studied. Tracked finger trajectories from the videos were post-processed and analysed using various filtering and smoothing methods. Position derivatives of the trajectories, speed and acceleration were extracted for the purposes of hand motion analysis. Overall, two methods, Kernelized Correlation Filters and Spatio-Temporal Context Learning tracking, performed better than the others in the tests. Both achieved high accuracy for the selected high-speed videos and also allowed real-time processing, being able to process over 500 frames per second. In addition, the results showed that different filtering methods can be applied to produce more appropriate velocity and acceleration curves calculated from the tracking data. Local Regression filtering and Unscented Kalman Smoother gave the best results in the tests. Furthermore, the results show that tracking and filtering methods are suitable for high-speed hand-tracking and trajectory-data post-processing.
Resumo:
The underwater light field is an important environmental variable as it, among other things, enables aquatic primary production. Although the portion of solar radiation that is referred to as visible light penetrates water, it is restricted to a limited surface water layer because of efficient absorption and scattering processes. Based on the varying content of optical constituents in the water, the efficiency of light attenuation changes in many dimensions and over various spatial and temporal scales. This thesis discusses the underwater light dynamics of a transitional coastal archipelago in south-western Finland, in the Baltic Sea. While the area has long been known to have a highly variable underwater light field, quantified knowledge on the phenomenon has been scarce, patchy, or non-existent. This thesis focuses on the variability in the underwater light field through euphotic depths (1% irradiance remaining), which were derived from in situ measurements of vertical profiles of photosynthetically active radiation (PAR). Spot samples were conducted in the archipelago of south-western Finland, mainly during the ice-free growing seasons of 2010 and 2011. In addition to quantifying both the seasonal and geographical patterns of euphotic depth development, the need and usability of underwater light information are also discussed. Light availability was found to fluctuate in multiple dimensions and scales. The euphotic depth was shown to have combined spatio-temporal dynamics rather than separate changes in spatial and temporal dimensions. Such complexity in the underwater light field creates challenges in data collection, as well as in its utilisation. Although local information is needed, in highly variable conditions spot sampled information may only poorly represent its surroundings. Moreover, either temporally or spatially limited sampling may cause biases in understanding underwater light dynamics. Consequently, the application of light availability data, for example in ecological modelling, should be made with great caution.
Resumo:
The aim of `Valssi' study was to find out the service requirements in `business-to-business' (B2B) markets and to present a new logistics service concept, where the traditional logistics service is expanded with significant manufacturing and value addedfacilities. The traditional third-party logistics service providers are not necessarily able to offer services, which cover widely the needs of potential customers. The study has been outlined to spare part markets in metal industry. In the second phase of the Valssi-project the aim is to examine the economical conditions and potentiality of the new logistics business concept. This research report (Part 1) concentrates on examining current trends in global and domestic logistics markets. Based on detailed survey among the participating companies, the study presents basis for a new logistics business concept model. The developed concept consists of 12 different service modules, which are split into deeper details of processes. The integration of worldwide supplier and service provider network together with customer companies systems is a challenge. The report focuses on evaluating the requirements for the new business concept from the customer-companies point of view. The study paints an overall picture of distribution and service provider network including an abstract about the software and system integration possibilities. As a result of the survey, it can be concluded that thereis need for the new business concept among the participating companies, and a modular service concept meets the requirements of them, because the new sophisticated concept considers the specialities involved in spare part logistics in metal industry.
Resumo:
The application of forced unsteady-state reactors in case of selective catalytic reduction of nitrogen oxides (NOx) with ammonia (NH3) is sustained by the fact that favorable temperature and composition distributions which cannot be achieved in any steady-state regime can be obtained by means of unsteady-state operations. In a normal way of operation the low exothermicity of the selective catalytic reduction (SCR) reaction (usually carried out in the range of 280-350°C) is not enough to maintain by itself the chemical reaction. A normal mode of operation usually requires supply of supplementary heat increasing in this way the overall process operation cost. Through forced unsteady-state operation, the main advantage that can be obtained when exothermic reactions take place is the possibility of trapping, beside the ammonia, the moving heat wave inside the catalytic bed. The unsteady state-operation enables the exploitation of the thermal storage capacity of the catalyticbed. The catalytic bed acts as a regenerative heat exchanger allowing auto-thermal behaviour when the adiabatic temperature rise is low. Finding the optimum reactor configuration, employing the most suitable operation model and identifying the reactor behavior are highly important steps in order to configure a proper device for industrial applications. The Reverse Flow Reactor (RFR) - a forced unsteady state reactor - corresponds to the above mentioned characteristics and may be employed as an efficient device for the treatment of dilute pollutant mixtures. As a main disadvantage, beside its advantages, the RFR presents the 'wash out' phenomena. This phenomenon represents emissions of unconverted reactants at every switch of the flow direction. As a consequence our attention was focused on finding an alternative reactor configuration for RFR which is not affected by the incontrollable emissions of unconverted reactants. In this respect the Reactor Network (RN) was investigated. Its configuration consists of several reactors connected in a closed sequence, simulating a moving bed by changing the reactants feeding position. In the RN the flow direction is maintained in the same way ensuring uniformcatalyst exploitation and in the same time the 'wash out' phenomena is annulated. The simulated moving bed (SMB) can operate in transient mode giving practically constant exit concentration and high conversion levels. The main advantage of the reactor network operation is emphasizedby the possibility to obtain auto-thermal behavior with nearly uniformcatalyst utilization. However, the reactor network presents only a small range of switching times which allow to reach and to maintain an ignited state. Even so a proper study of the complex behavior of the RN may give the necessary information to overcome all the difficulties that can appear in the RN operation. The unsteady-state reactors complexity arises from the fact that these reactor types are characterized by short contact times and complex interaction between heat and mass transportphenomena. Such complex interactions can give rise to a remarkable complex dynamic behavior characterized by a set of spatial-temporal patterns, chaotic changes in concentration and traveling waves of heat or chemical reactivity. The main efforts of the current research studies concern the improvement of contact modalities between reactants, the possibility of thermal wave storage inside the reactor and the improvement of the kinetic activity of the catalyst used. Paying attention to the above mentioned aspects is important when higher activity even at low feeding temperatures and low emissions of unconverted reactants are the main operation concerns. Also, the prediction of the reactor pseudo or steady-state performance (regarding the conversion, selectivity and thermal behavior) and the dynamicreactor response during exploitation are important aspects in finding the optimal control strategy for the forced unsteady state catalytic tubular reactors. The design of an adapted reactor requires knowledge about the influence of its operating conditions on the overall process performance and a precise evaluation of the operating parameters rage for which a sustained dynamic behavior is obtained. An apriori estimation of the system parameters result in diminution of the computational efforts. Usually the convergence of unsteady state reactor systems requires integration over hundreds of cycles depending on the initial guess of the parameter values. The investigation of various operation models and thermal transfer strategies give reliable means to obtain recuperative and regenerative devices which are capable to maintain an auto-thermal behavior in case of low exothermic reactions. In the present research work a gradual analysis of the SCR of NOx with ammonia process in forced unsteady-state reactors was realized. The investigation covers the presentationof the general problematic related to the effect of noxious emissions in the environment, the analysis of the suitable catalysts types for the process, the mathematical analysis approach for modeling and finding the system solutions and the experimental investigation of the device found to be more suitable for the present process. In order to gain information about the forced unsteady state reactor design, operation, important system parameters and their values, mathematical description, mathematicalmethod for solving systems of partial differential equations and other specific aspects, in a fast and easy way, and a case based reasoning (CBR) approach has been used. This approach, using the experience of past similarproblems and their adapted solutions, may provide a method for gaining informations and solutions for new problems related to the forced unsteady state reactors technology. As a consequence a CBR system was implemented and a corresponding tool was developed. Further on, grooving up the hypothesis of isothermal operation, the investigation by means of numerical simulation of the feasibility of the SCR of NOx with ammonia in the RFRand in the RN with variable feeding position was realized. The hypothesis of non-isothermal operation was taken into account because in our opinion ifa commercial catalyst is considered, is not possible to modify the chemical activity and its adsorptive capacity to improve the operation butis possible to change the operation regime. In order to identify the most suitable device for the unsteady state reduction of NOx with ammonia, considering the perspective of recuperative and regenerative devices, a comparative analysis of the above mentioned two devices performance was realized. The assumption of isothermal conditions in the beginningof the forced unsteadystate investigation allowed the simplification of the analysis enabling to focus on the impact of the conditions and mode of operation on the dynamic features caused by the trapping of one reactant in the reactor, without considering the impact of thermal effect on overall reactor performance. The non-isothermal system approach has been investigated in order to point out the important influence of the thermal effect on overall reactor performance, studying the possibility of RFR and RN utilization as recuperative and regenerative devices and the possibility of achieving a sustained auto-thermal behavior in case of lowexothermic reaction of SCR of NOx with ammonia and low temperature gasfeeding. Beside the influence of the thermal effect, the influence of the principal operating parameters, as switching time, inlet flow rate and initial catalyst temperature have been stressed. This analysis is important not only because it allows a comparison between the two devices and optimisation of the operation, but also the switching time is the main operating parameter. An appropriate choice of this parameter enables the fulfilment of the process constraints. The level of the conversions achieved, the more uniform temperature profiles, the uniformity ofcatalyst exploitation and the much simpler mode of operation imposed the RN as a much more suitable device for SCR of NOx with ammonia, in usual operation and also in the perspective of control strategy implementation. Theoretical simplified models have also been proposed in order to describe the forced unsteady state reactors performance and to estimate their internal temperature and concentration profiles. The general idea was to extend the study of catalytic reactor dynamics taking into account the perspectives that haven't been analyzed yet. The experimental investigation ofRN revealed a good agreement between the data obtained by model simulation and the ones obtained experimentally.
Resumo:
Tämän tutkimuksen tavoitteena oli tutkia langattomien internet palveluiden arvoverkkoa ja liiketoimintamalleja. Tutkimus oli luonteeltaan kvalitatiivinen ja siinä käytettiin strategiana konstruktiivista case-tutkimusta. Esimerkkipalveluna oli Treasure Hunters matkapuhelinpeli. Tutkimus muodostui teoreettisesta ja empiirisestä osasta. Teoriaosassa liitettiin innovaatio, liiketoimintamallit ja arvoverkko käsitteellisesti toisiinsa, sekä luotiin perusta liiketoimintamallien kehittämiselle. Empiirisessä osassa keskityttiin ensin liiketoimintamallien luomiseen kehitettyjen innovaatioiden pohjalta. Lopuksi pyrittiin määrittämään arvoverkko palvelun toteuttamiseksi. Tutkimusmenetelminä käytettiin innovaatiosessiota, haastatteluja ja lomakekyselyä. Tulosten pohjalta muodostettiin useita liiketoimintakonsepteja sekä kuvaus arvoverkon perusmallista langattomille peleille. Loppupäätelmänä todettiin että langattomat palvelut vaativat toteutuakseen useista toimijoista koostuvan arvoverkon.
Resumo:
The aim of this thesis was to develop a model, which can predict heat transfer, heat release distribution and vertical temperature profile of gas phase in the furnace of a bubbling fluidized bed (BFB) boiler. The model is based on three separate model components that take care of heat transfer, heat release distribution and mass and energy balance calculations taking into account the boiler design and operating conditions. The model was successfully validated by solving the model parameters on the basis of commercial size BFB boiler test run information and by performing parametric studies with the model. Implementation of the developed model for the Foster Wheeler BFB design procedures will require model validation with existing BFB database and possibly more detailed measurements at the commercial size BFB boilers.
Resumo:
Tämä työ tehtiin globaaliin elektroniikka-alan yritykseen. Diplomityö liittyy haasteeseen, jonka lisääntynyt globalisaatio ja kiristyvä kilpailu ovat luoneet: case yrityksen on selvitettävä kuinka se voi saavuttaa kasvutavoitteet myös tulevaisuudessa hankkimalla uusia asiakkaita ja olemalla yhä enenevissä määrin maailmanlaajuisesti läsnä. Tutkimuksen tavoite oli löytää sopiva malli potentiaalisten avainasiakkaiden identifiointiin ja valintaan, sekä testata ja modifioida valittua mallia case yrityksen tarpeiden mukaisesti. Erityisesti raakadatan kerääminen, asiakkaiden houkuttelevuuskriteerit ja kohdemarkkinarako olivat asioita, jotka tarvitsivat tutkimuksessa huomiota. Kirjallisuuskatsauksessa keskityttiin yritysmarkkinoihin, eri asiakassuhteenhallinnan lähestymistapoihin ja avainasiakkaiden määrittämiseen. CRM:n, KAM:n ja Customer Insight-ajattelun perusteet esiteltiin yhdessä eri avainasiakkaiden identifiointimallien kanssa. Valittua Chevertonin mallia testattiin ja muokattiin työn empiirisessä osassa. Tutkimuksen empiirinen kontribuutio on modifioitu malli potentiaalisten avainasiakkaiden identifiointiin. Se auttaa päätöksentekijöitä etenemään systemaattisesti ja organisoidusti askel askeleelta kohti potentiaalisten asiakkaiden listaa tietyltä markkina-alueelta. Työ tarjoaa työkalun tähän prosessiin sekä luo pohjaa tulevaisuuden tutkimukselle ja toimenpiteille.
Resumo:
The objective of this master’s thesis was to develop a model for mobile subscription acquisition cost, SAC, and mobile subscription retention cost, SRC, by applying activity-based cost accounting principles. The thesis was conducted as a case study for a telecommunication company operating on the Finnish telecommunication market. In addition to activity-based cost accounting there were other theories studied and applied in order to establish a theory framework for this thesis. The concepts of acquisition and retention were explored in a broader context with the concepts of customer satisfaction, loyalty and profitability and eventually customer relationship management to understand the background and meaning of the theme of this thesis. The utilization of SAC and SRC information is discussed through the theories of decision making and activity-based management. Also, the present state and future needs of SAC and SRC information usage at the case company as well as the functions of the company were examined by interviewing some members of the company personnel. With the help of these theories and methods it was aimed at finding out both the theory-based and practical factors which affect the structure of the model. During the thesis study it was confirmed that the existing SAC and SRC model of the case company should be used as the basis in developing the activity-based model. As a result the indirect costs of the old model were transformed into activities and the direct costs were continued to be allocated directly to acquisition of new subscriptions and retention of old subscriptions. The refined model will enable managing the subscription acquisition, retention and the related costs better through the activity information. During the interviews it was found out that the SAC and SRC information is also used in performance measurement and operational and strategic planning. SAC and SRC are not fully absorbed costs and it was concluded that the model serves best as a source of indicative cost information. This thesis does not include calculating costs. Instead, the refined model together with both the theory-based and interview findings concerning the utilization of the information produced by the model will serve as a framework for the possible future development aiming at completing the model.
Resumo:
The article describes some concrete problems that were encountered when writing a two-level model of Mari morphology. Mari is an agglutinative Finno-Ugric language spoken in Russia by about 600 000 people. The work was begun in the 1980s on the basis of K. Koskenniemi’s Two-Level Morphology (1983), but in the latest stage R. Beesley’s and L. Karttunen’s Finite State Morphology (2003) was used. Many of the problems described in the article concern the inexplicitness of the rules in Mari grammars and the lack of information about the exact distribution of some suffixes, e.g. enclitics. The Mari grammars usually give complete paradigms for a few unproblematic verb stems, whereas the difficult or unclear forms of certain verbs are only superficially discussed. Another example of phenomena that are poorly described in grammars is the way suffixes with an initial sibilant combine to stems ending in a sibilant. The help of informants and searches from electronic corpora were used to overcome such difficulties in the development of the two-level model of Mari. The variation of the order of plural markers, case suffixes and possessive suffixes is a typical feature of Mari. The morphotactic rules constructed for Mari declensional forms tend to be recursive and their productivity must be limited by some technical device, such as filters. In the present model, certain plural markers were treated like nouns. The positional and functional versatility of the possessive suffixes can be regarded as the most challenging phenomenon in attempts to formalize the Mari morphology. Cyrillic orthography, which was used in the model, also caused problems. For instance, a Cyrillic letter may represent a sequence of two sounds, the first being part of the word stem while the other belongs to a suffix. In some cases, letters for voiced consonants are also generalized to represent voiceless consonants. Such orthographical conventions distance a morphological model based on orthography from the actual (morpho)phonological processes in the language.
Resumo:
The objective of the thesis was to develop a competitors’ financial performance monitoring model for management reporting. The research consisted of the selections of the comparison group and the performance meters as well as the actual creation of the model. A brief analysis of the current situation was also made. The aim of the results was to improve the financial reporting quality in the case organization by adding external business environment observation to the management reports. The comparison group for the case company was selected to include five companies that were all involved in power equipment engineering and project type business. The most limiting factor related to the comparison group selection was the availability of quarterly financial reporting. The most suitable performance meters were defined to be the developments of revenue, order backlog and EBITDA. These meters should be monitored systematically on quarterly basis and reported to the company management in a brief and informative way. The monitoring model was based on spreadsheet construction with key characteristics being usability, flexibility and simplicity. The model acts as a centered storage for financial competitor information as well as a reporting tool. The current market situation is strongly affected by the economic boom in the recent years and future challenges can be clearly seen in declining order backlogs. The case company has succeeded well related to its comparison group during the observation period since its business volume and profitability have developed in the best way.