4 resultados para Beta(2)-adrenergic Receptors
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Information gained from the human genome project and improvements in compound synthesizing have increased the number of both therapeutic targets and potential lead compounds. This has evolved a need for better screening techniques to have a capacity to screen number of compound libraries against increasing amount of targets. Radioactivity based assays have been traditionally used in drug screening but the fluorescence based assays have become more popular in high throughput screening (HTS) as they avoid safety and waste problems confronted with radioactivity. In comparison to conventional fluorescence more sensitive detection is obtained with time-resolved luminescence which has increased the popularity of time-resolved fluorescence resonance energy transfer (TR-FRET) based assays. To simplify the current TR-FRET based assay concept the luminometric homogeneous single-label utilizing assay technique, Quenching Resonance Energy Transfer (QRET), was developed. The technique utilizes soluble quencher to quench non-specifically the signal of unbound fraction of lanthanide labeled ligand. One labeling procedure and fewer manipulation steps in the assay concept are saving resources. The QRET technique is suitable for both biochemical and cell-based assays as indicated in four studies:1) ligand screening study of β2 -adrenergic receptor (cell-based), 2) activation study of Gs-/Gi-protein coupled receptors by measuring intracellular concentration of cyclic adenosine monophosphate (cell-based), 3) activation study of G-protein coupled receptors by observing the binding of guanosine-5’-triphosphate (cell membranes), and 4) activation study of small GTP binding protein Ras (biochemical). Signal-to-background ratios were between 2.4 to 10 and coefficient of variation varied from 0.5 to 17% indicating their suitability to HTS use.
Resumo:
Alpha2-Adrenoceptors are cell-surface G protein coupled receptors that mediate many of the effects of the catecholamines noradrenaline and adrenaline. The three human α2-adrenoceptor subtypes are widely expressed in different tissues and organs, and they mediate many different physiological and pharmacological effects in the central and peripheral nervous system and as postsynaptic receptors in target organs. Previous studies have demonstrated that α2-adrenoceptors mediate both vascular constriction and dilatation in humans. Large inter-individual variation has been observed in the vascular responses to α2-adrenoceptor activation in clinical studies. All three receptor subtypes are potential drug targets. It was therefore considered important to further elucidate the details of adrenergic vascular regulation and its genetic variation, since such knowledge may help to improve the development of future cardiovascular drugs and intensive care therapies. Dexmedetomidine is the most selective and potent α2-adrenoceptor agonist currently available for clinical use. When given systemically, dexmedetomidine induces nearly complete sympatholysis already at low concentrations, and postsynaptic effects, such vasoconstriction, can be observed with increasing concentrations. Thus, local infusions of small doses of dexmedetomidine into dorsal hand veins and the application of pharmacological sympathectomy with brachial plexus block provide a means to assess drug-induced peripheral vascular responses without interference from systemic pharmacological effects and autonomic nervous system regulation. Dexmedetomidine was observed to have biphasic effects on haemodynamics, with an initial decrease in blood pressure at low concentrations followed by substantial increases in blood pressure and coronary vascular resistance at high concentrations. Plasma concentrations of dexmedetomidine that significantly exceeded the recommended therapeutic level did not reduce myocardial blood flow below the level that is observed with the usual therapeutic concentrations and did not induce any evident myocardial ischaemia in healthy subjects. Further, it was demonstrated that dexmedetomidine also had significant vasodilatory effects through activation of endothelial nitric oxide synthesis, and thus when the endothelial component of the blood vessel response to dexmedetomidine was inhibited, peripheral vasoconstriction was augmented. Hand vein constriction responses to α2-adrenoceptor activation by dexmedetomidine were only weakly associated with the constriction responses to α1-adrenoceptor activation, pointing to independent cellular regulation by these two adrenoceptor classes. Substantial inter-individual variation was noted in the venous constriction elicited by activation of α2-adrenoceptors by dexmedetomidine. In two study populations from two different continents, a single nucleotide polymorphism in the PRKCB gene was found to be associated with the dorsal hand vein constriction response to dexmedetomidine, suggesting that protein kinase C beta may have an important role in the vascular α2-adrenoceptor signalling pathways activated by dexmedetomidine.
Resumo:
Allergy is characterized by T helper (Th) 2-type immune response after encounter with an allergen leading to subsequent immunoglobulin (Ig) E-mediated hypersensitivity reaction and further allergic inflammation. Allergen-specific immunotherapy (SIT) balances the Th2-biased immunity towards Th1 and T regulatory responses. Adjuvants are used in allergen preparations to intensify and modify SIT. β-(1,2)-oligomannoside constituents present in Candida albicans (C. albicans) cell wall possess Th1-type immunostimulatory properties. The aim of this thesis was to develop a β-(1,2)-linked carbohydrate compound with known structure and anti-allergic properties to be applied as an adjuvant in SIT. First the immunostimulatory properties of various fungal extracts were studied. C. albicans appeared to be the most promising Th1-inducing extract, which led to the synthesis of various mono- or divalent oligomannosides designed on the basis of C. albicans. These carbohydrates did not induce strong cytokine production in human peripheral blood mononuclear cell (PBMC) cultures. In contrast to earlier reports using native oligosaccharides from C. albicans, synthetic -(1,2)-linked mannotetraose did not induce any tumor necrosis factor production in murine macrophages. Next, similarities with synthesized divalent mannosides and the antigenic epitopes of β-(1,2)-linked C. albicans mannan were investigated. Two divalent compounds inhibited specific IgG antibodies binding to below 3 kDa hydrolyzed mannan down to the level of 30–50% showing similar antigenicity to C. albicans. Immunomodulatory properties of synthesized carbohydrate assemblies ranging from mono- to pentavalent were evaluated. A trivalent acetylated dimannose (TADM) induced interleukin-10 (IL-10) and interferon-γ responses. TADM also suppressed birch pollen induced IL-4 and IL-5 responses in allergen (Bet v) stimulated PBMCs of birch pollen allergic subjects. This suppression was stronger with TADM than with other used adjuvants, immunostimulatory oligonucleotides and monophosphoryl lipid A. In a murine model of asthma, the allergen induced inflammatory responses could also be suppressed by TADM on cytokine and antibody levels.