12 resultados para Baire-1 Function

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acute lung injury (ALI) is a syndrome of acute hypoxemic respiratory failure with bilateral pulmonary infiltrates that is not caused by left atrial hypertension. Since there is no effective treatment available, this frequent clinical syndrome significantly contributes to mortality of both medical and surgical patients. Great majority of the patients with the syndrome suffers from indirect ALI caused by systemic inflammatory response syndrome (SIRS). Sepsis, trauma, major surgery and severe burns, which represent the most common triggers of SIRS, often induce an overwhelming inflammatory reaction leading to dysfunction of several vital organs. Studies of indirect ALI due to SIRS revealed that respiratory dysfunction results from increased permeability of endothelium. Disruption of endothelial barrier allows extravasation of protein-rich liquid and neutrophils to pulmonary parenchyma. Both under normal conditions and in inflammation, endothelial barrier function is regulated by numerous mechanisms. Endothelial enzymes represent one of the critical control points of vascular permeability and leukocyte trafficking. Some endothelial enzymes prevent disruption of endothelial barrier by production of anti-inflammatory substances. For instance, nitric oxide synthase (NOS) down-regulates leukocyte extravasation in inflammation by generation of nitric oxide. CD73 decreases vascular leakage and neutrophil emigration to inflamed tissues by generation of adenosine. On the other hand, vascular adhesion protein-1 (VAP-1) mediates leukocyte trafficking to the sites of inflammation both by generation of pro-inflammatory substances and by physically acting as an adhesion molecule. The aims of this study were to define the role of endothelial enzymes NOS, CD73 and VAP-1 in acute lung injury. Our data suggest that increasing substrate availability for NOS reduces both lung edema and neutrophil infiltration and this effect is not enhanced by concomitant administration of antioxidants. CD73 protects from vascular leakage in ALI and its up-regulation by interferon-β represents a novel therapeutic strategy for treatment of this syndrome. Enzymatic activity of VAP-1 mediates neutrophil infiltration in ALI and its inhibition represents an attractive approach to treat ALI.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During mitosis, the duplicated genome must be accurately divided between two daughter cells. Polo-like kinase 1 (Plk1) and Aurora B kinase, together with its binding partners Incenp, Survivin and Borealin (chromosomal passenger complex, CPC), have key roles in coordinating mitotic events. The accuracy of cell division is safeguarded by a signaling cascade termed the mitotic spindle checkpoint (SC), which ensures that chromosomes are not physically separated before correct bipolar attachments have been formed between kinetochores and spindle microtubules (MT). An inhibitory “wait anaphase” signal, which delays chromosome separation (anaphase onset), is created at individual kinetochores and broadcasted throughout the cell in response to lack of kinetochore-microtubule (kMT) attachment or proper interkinetochore tension. It is believed that the fast turnover of SC molecules at kinetochores contributes to the cell’s ability to produce this signal and enables rapid responses to changing cellular conditions. Kinetochores that lack MT attachment and tension express a certain phosphoepitope called the 3F3/2 phosphoepitope, which has been linked to SC signaling. In the experimental part, we investigated the regulation of the 3F3/2 phosphoepitope, analyzed whether CPC molecules turn over at centromeres, and dissected the mitotic roles of the CPC using a microinjection technique that allowed precise temporal control over its function. We found that the kinetochore 3F3/2 phosphoepitope is created by Plk1, and that CPC proteins exhibit constant exchange at centromeres. Moreover, we found that CPC function is necessary in the regulation of chromatid movements and spindle morphology in anaphase. In summary, we identified new functions of key mitotic regulators Plk1 and CPC, and provided insighs into the coordination of mitotic events.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transcription factors play a crucial role in the regulation of cell behavior by modulating gene expression profiles. Previous studies have described a dual role for the AP-1 family transcription factor c-Jun in the regulation of cellular fate. In various cell types weak and transient activations of c-Jun N-terminal kinase (JNK) and c-Jun appear to contribute to proliferation and survival, whereas strong and prolonged activation of JNK and c-Jun result in apoptosis. These opposite roles played by c-Jun are cell type specific and the molecular mechanisms defining these antonymous c-Jun-mediated responses remain incompletely understood. c-Jun activity in transformed cells is regulated by signalling cascades downstream of oncoproteins such as Ras and Raf. In addition, the pro-proliferative role and the survival promoting function for c-Jun has been described in various cancer models. Furthermore, c-Jun was described to be overexpressed in different cancer types. However, the molecular mechanisms by which c-Jun exerts these oncogenic functions are not all clearly established. Therefore it is of primary interest to further identify molecular mechanisms and functions for c-Jun in cancer. Regulation of gene expression is tightly dependent on accurate protein-protein interactions. Therefore, co-factors for c-Jun may define the functions for c-Jun in cancer. Identification of protein-protein interactions promoting cancer may provide novel possibilities for cancer treatment. In this study, we show that DNA topoisomerase I (TopoI) is a transcriptional co-factor for c-Jun. Moreover, c-Jun and TopoI together promote expression of epidermal growth factor receptor (EGFR) in cancer cells. We also show that the clinically used TopoI inhibitor topotecan reduces EGFR expression. Importantly, the effect of TopoI on EGFR transcription was shown to depend on c-Jun as Jun-/- cells or cells treated with JNK inhibitor SP600125 are resistant to topotecan treatment both in regulation of EGFR expression and cell proliferation. Moreover, c-Jun regulates the nucleolar localization and the function of the ribonucleic acid (RNA) helicase DDX21, a previously identified member of c-Jun protein complex. In addition, c-Jun stimulates rRNA processing by supporting DDX21 rRNA binding. Finally, this study characterizes a DDX21 dependent expression of cyclin dependent kinase (Cdk) 6, a correlation of DDX21 expression with prostate cancer progression and a substrate binding dependency of DDX21 nucleolar localization in prostate cancer cells. Taken together, the results of this study validate the c-Jun-TopoI interaction and precise the c-Jun-DDX21 interaction. Moreover, these results show the importance for protein-protein interaction in the regulation of their cellular functions in cancer cell behavior. Finally, the results presented here disclose new exciting therapeutic opportunities for cancer treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Integrins are heterodimeric adhesion receptors mediating adhesion to extracellular matrix proteins and to other cells. Integrins are important in embryonic development, structural integrity of connective tissue, blood thrombus formation, and immune defense system. Integrins are transmembrane proteins whose ligand binding capacity (activity) is regulated by large conformational changes. Extracellular ligand binding or intracellular effector binding to integrin cytoplasmic face regulate integrin activity. Integrins are thus able to mediate bi-directional signaling. Integrin function is also regulated by intracellular location. Integrins are constantly recycled from endocytic vesicles to plasma membrane, and this has been shown to be important for cell migration and invasion as well. Deregulation of integrin functionality can lead to deleterious illnesses, such as bleeding or inflammatory disorders. It is also evident that integrin deregulation is associated with cancer progression. In this study, a novel Beta1 integrin associating protein, Rab21, was characterized. Rab21 binding to integrin cytoplasmic tail was shown to be important for Beta1 integrin endo- and exocytosis – intracellular trafficking. It was furher shown that this interaction has an important role in cell adhesion, migration, as well as in the final step of cell division, cytokinesis. This work showed that abrogation of Rab21 function or β1 integrin endocytic traffic, can lead to defects in cell division and results in formation of multinucleated cells. Multinucleation and especially tetraploidy can be a transient pathway to aneuploidy and tumorigenesis. This work characterized chromosomal deletions in rab21 locus in ovarian and prostate cancer samples and showed that a cell line with rab21 deletion also had impairment in cell division, which could be rescued by Rab21 re-expression. The work demonstrates an important role for Rab21 and Beta1 integrin traffic regulation in cell adhesion and division, and suggests a probable associaton with tumorigenesis. In this study, Beta1 integrin activity regulation was also addressed. A novel cell array platform for genome-scale RNAi screenings was characterized here. More than 4500 genes were knocked-down in prostate cancer cells using siRNA-mediated silencing. The effects on Beta1 integrin activity were analyzed upon knock-downs. The screen identified more that 400 putative regulators of Beta1 integrin activity in prostate cancer. In conclusion, this work will help us to understand complex regulatory pathways involved in cancer cell adhesion and migration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is crucial that lymphocytes patrol the body against foreign intruders and that leukocytes invade inflamed tissues to ameliorate the infection or injury. The adhesion molecules in leukocytes and endothelial cells play an essential role in the immune response by directing the traffic of leukocytes. However, the same molecules that guide leukocyte traffic under physiological conditions are also involved in pathological situations, when an overly excessive or harmful inflammatory response leads to tissue destruction and organ dysfunction or tumor growth. Vascular adhesion protein-1 (VAP-1) and Common lymphatic endothelial and vascular endothelial receptor-1 (CLEVER-1) are endothelial molecules that participate in the adhesion of leukocytes to the endothelia. This study was designed to elucidate, using different inflammation models, the role of VAP-1 and CLEVER-1 in leukocyte migration to the inflamed tissue, and to evaluate the use of antibodies against these molecules as an anti-adhesive therapy. Also, the role of CLEVER-1 during tumorigenesis was studied. Blocking the function of VAP-1 with antibodies significantly decreased the accumulation of leukocytes in the inflamed tissue. Targeting CLEVER-1 prevented cell migration via lymphatic vessels, as well as leukocyte traffic during inflammation. Following the anti-CLEVER-1 antibody treatment the number of immune regulating leukocytes in tumors was reduced, which led to a decrease in tumor growth. However, the normal immune response towards immunization or bacterial infection was not compromised. Thus, VAP-1 and CLEVER-1 are both potential targets for antiinflammatory therapies for preventing the harmful accumulation of leukocytes in inflamed areas. Targeting CLEVER-1 may also inhibit tumor growth by reducing immunosuppressive leukocytes in tumors

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Integrins are heterodimeric, signaling transmembrane adhesion receptors that connect the intracellular actin microfilaments to the extracellular matrix composed of collagens and other matrix molecules. Bidirectional signaling is mediated via drastic conformational changes in integrins. These changes also occur in the integrin αI domains, which are responsible for ligand binding by collagen receptor and leukocyte specific integrins. Like intact integrins, soluble αI domains exist in the closed, low affinity form and in the open, high affinity form, and so it is possible to use isolated αI domains to study the factors and mechanisms involved in integrin activation/deactivation. Integrins are found in all mammalian tissues and cells, where they play crucial roles in growth, migration, defense mechanisms and apoptosis. Integrins are involved in many human diseases, such as inflammatory, cardiovascular and metastatic diseases, and so plenty of effort has been invested into developing integrin specific drugs. Humans have 24 different integrins, four of which are collagen receptor (α1β1, α2β1, α10β1, α11β1) and five leukocyte specific integrins (αLβ2, αMβ2, αXβ2, αDβ2, αEβ7). These two integrin groups are quite unselective having both primary and secondary ligands. This work presents the first systematic studies performed on these integrin groups to find out how integrin activation affects ligand binding and selectivity. These kinds of studies are important not only for understanding the partially overlapping functions of integrins, but also for drug development. In general, our results indicated that selectivity in ligand recognition is greatly reduced upon integrin activation. Interestingly, in some cases the ligand binding properties of integrins have been shown to be cell type specific. The reason for this is not known, but our observations suggest that cell types with a higher integrin activation state have lower ligand selectivity, and vice versa. Furthermore, we solved the three-dimensional structure for the activated form of the collagen receptor α1I domain. This structure revealed a novel intermediate conformation not previously seen with any other integrin αI domain. This is the first 3D structure for an activated collagen receptor αI domain without ligand. Based on the differences between the open and closed conformation of the αI domain we set structural criteria for a search for effective collagen receptor drugs. By docking a large number of molecules into the closed conformation of the α2I domain we discovered two polyketides, which best fulfilled the set structural criteria, and by cell adhesion studies we showed them to be specific inhibitors of the collagen receptor integrins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Kalciumjonen reglerar flera processer i celler såsom transkribering av gener, celldelning, cellernas rörlighet och celldöd. Därför har cellerna utvecklat många mekanismer för att reglera den intracellulära kalciumkoncentrationen. Kalciumkanaler spelar en viktig roll i denna regleringsprocess. TRPC-kanalerna (eng. canonical transient receptor potential) är en familj av jonkanaler med sju medlemmar (TRPC1-7) vars regleringsmekanismer och fysiologiska roller är varierande. TRPC2-kanalens fysiologiska signifikans, samt hur kanalen regleras, är dåligt karakteriserad. För första gången, rapporterar vi närvaron av TRPC2 kanalen i råttans sköldkörtelceller samt primära sköldkörtelceller från råtta. Hos gnagare har TRPC2 antagits vara exklusivt uttryckt i det vomeronasala organet. För att undersöka den fysiologiska betydelsen av kanalen, har vi utvecklat stabila celler med nedreglerat TRPC2 (shTRPC2) m.h.a. shRNA-teknik. Nedreglering av TRPC2 resulterade i stora skillnader i flera viktiga cellulära funktioner och i regleringen av sköldkörtelcellernas cellsignalering. Nedreglering av TRPC2 orsakade minskad agonist-beroende frigivning av kalcium från det endoplasmatiska nätverket, samt minskat agonist-beroende inflöde av extracellulärt kalcium, men ökade det basala kalciuminflödet. Uttrycket av PKCβ1 och PKCδ, SERCA-aktiviteten och kalciumhalten i det endoplasmatiska nätverket minskade i shTRPC2 celler. Kommunikation mellan kalcium- och cAMP-signalering påvisades vara TRPC2-beroende, vilket visades reglera uttrycket av TSH-receptorn. Vi undersökte också betydelsen av TRPC2 kanalen i reglering av sköldkörtelcellers proliferation, migration, vidhäftning och invasion; processer som alla var dämpade i shTRPC2 celler. Samamnfattningsvis påvisade dessa resultat en ny och viktig fysiologisk betydelse för TRPC2 kanalerna.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The distinction between lymphatic vessels and blood vessels is a crucial factor in many studies in immunology, vascular biology and cancer biology. They both share several characteristics and perform related, though different functions. They are equally important for the performance of the human immune system with the continuous recirculation of leukocytes from the tissues via lymphatics to the blood vessels and back into the tissue presenting the link between both systems. This study was undertaken to elucidate the differences in the gene expression between primary blood- and lymphatic endothelial cells as well as the two immortalized cell lines HMEC-1 (human microvascular endothelial cell line 1) and TIME (telomerase immortalized microvascular endothelial cell line). Furthermore, we wanted to investigate the mystery surrounding the identity of the antigen recognized by the prototype blood vascular marker PAL-E. In the last step we wanted to study whether the PAL-E antigen would be involved in the process of leukocyte migration from the bloodstream into the surrounding tissue. Our results clearly show that the gene expression in primary blood endothelial cells (BEC), lymphatic endothelial cells (LEC) and the cell lines HMEC-1 and TIME is plastic. Comparison of a large set of BEC- and LEC datasets allowed us to assemble a catalog of new, stable BEC- or LEC specific markers, which we verified in independent experiments. Additionally, several lines of evidence demonstrated that PAL-E recognizes plasmalemma vesicle associated protein 1 (PV-1), which can form complexes with vimentin and neuropilin-1. Finally, numerous in vitro and in vivo experiments identify the first function of the protein PV-1 during leukocyte trafficking, where it acts as regulatory molecule.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Breast cancer is a highly heterogenous malignancy, which despite of the similar histological type shows different clinical behaviour and response to therapy. Prognostic factors are used to estimate the risk for recurrence and the likelihood of treatment effectiveness. Because breast cancer is one of the most common causes of cancer death in women worldwide, identification of new prognostic markers are needed to develop more specific and targeted therapies. Cancer is caused by uncontrolled cell proliferation. The cell cycle is controlled by specific proteins, which are known as cyclins. They function at important checkpoints by activating cyclin-dependent kinase enzymes. Overexpression of different cyclins has been linked to several cancer types and altered expression of cyclins A, B1, D1 and E has been associated with poor survival. Little is known about the combined expression of cyclins in relation to the tumour grade, breast cancer subtype and other known prognostic factors. In this study cyclins A, B1 and E were shown to correlate with histological grade, Ki-67 and HER2 expression. Overexpression of cyclin D1 correlated with receptor status and non-basal breast cancer suggesting that cyclin D1 might be a marker of good prognosis. Proteolysis in the surrounding tumour stroma is increased during cancer development. Matrix metalloproteinases (MMPs) are proteolytic enzymes that are capable of degrading extracellular matrix proteins. Increased expression and activation of several MMPs have been found in many cancers and MMPs appear to be important regulators of invasion and metastasis. In this study MMP-1 expression was analysed in breast cancer epithelial cells and in cancer associated stromal cells. MMP-1 expression by breast cancer epithelial cells was found to carry an independent prognostic value as did Ki-67 and bcl-2. The results suggest that in addition to stromal cells MMP-1 expression in tumour cells control breast cancer progression. Decorin is a small proteoglycan and an important component of the extracellular matrix. Decorin has been shown to inhibit growth of tumour cells and reduced decorin expression is associated with a poor prognosis in several cancer types. There has been some suspicion wheather different cancer cells express decorin. In this study decorin expression was shown to localize only in the cells of the original stroma, while breast cancer epithelial cells were negative for decorin expression. However, transduction of decorin in decorin-negative human breast cancer cells markedly modulated the growth pattern of these cells. This study provides evidence that targeted decorin transduction to breast cancer cells could be used as a novel adjuvant therapy in breast malignancies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The immune response and immune suppression are equally essential for the immune system to protect the host against an infection and to protect self-molecules in different pathophysiological conditions. Pregnancy is one of the conditions where the maternal immune system remains resistant against microbes and yet attains tolerance to protect the fetus, whose genetic material differs partially from the mother’s. However, if the balance of immune suppression is not precise in the host it can favor conditions which lead to diseases, such as cancer and autoimmune disorders. This study was initiated to investigate the expression and functions of CLEVER-1/Stabilin-1, a multifunctional protein expressed on subsets of endothelial cells and type II macrophages, as an immune suppressive molecule. Firstly, the expression of CLEVER-1/stabilin-1 and its function in human placental macrophages were examined. Secondly, the expression profile and functional significance of stabilin-1 on healthy human monocytes was investigated. The results clarified the expression of CLEVER-1/stabilin-1 on placental macrophages, and verified that CLEVER-1/stabilin-1 functions as an adhesion and scavenging molecule on these cells. The data from normal monocytes revealed that the monocytes with low stabilin-1 expression carried a pro-inflammatory gene signature, and that stabilin-1 can directly or indirectly regulate pro-inflammatory genes in monocytes. Finally, it was shown that monocyte CLEVER-1/stabilin-1 dampens IFN production by T cells. To conclude, CLEVER-1/stabilin-1 is defined as an immune suppressive molecule on monocytes and macrophages. Strikingly, anti-stabilin-1 antibodies may have the potential to promote the Th1 dependent inflammatory response and counteract the tumor induced immune suppression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The signalling sphingolipid sphingosine-1-phosphate (S1P) is necessary for development of the immune system and vasculature and on a cellular level regulates migration, proliferation and survival. Due to these traits S1P has an important role in cancer biology. It is considered a primarily cancer-promoting factor and the enzyme which produces it, sphingosine kinase (SphK), is often over-expressed in tumours. S1P is naturally present in the blood, lymph, tissue fluids and cell cytoplasm and functions through its cell surface receptors (S1P1-5) and as an intracellular second messenger. Sphingosylphosphorylcholine (SPC) is closely related to S1P and has similar regulatory functions but has not been extensively studied. Both S1P and SPC are able to evoke either stimulatory or inhibitory effects on cancer cells depending on the context. The aim of this thesis work was to study novel regulatory targets of S1P and SPC, which mediate the effects of S1P/SPC signalling on cancer cell behaviour. The investigated targets are the transcription factor hypoxia-inducible factor 1 (HIF-1), the intermediate filament protein vimentin and components of the Hippo signalling pathway. HIF-1 has a central role in cancer biology, as it regulates a multitude of cancer-related genes and is potently activated by intratumoural hypoxia through stabilization of the regulatory subunit HIF-1α. Tumours typically harbour high HIF-1α levels and HIF-1, in turn, facilitates tumour angiogenesis and metastasis and regulates cancer cell metabolism. We found S1P to induce follicular thyroid cancer cell migration in normal oxygen conditions by increasing HIF-1α synthesis and stability and subsequently HIF-1 activity. Vimentin is a central regulator of cell motility and is also commonly over-expressed in cancers. Vimentin filaments form a cytoskeletal network in mesenchymal cells as well as epithelial cancer cells which have gone through epithelial-mesenchymal transition (EMT). Vimentin is heavily involved in cancer cell invasion and gives tumours metastatic potential. We saw both S1P and SPC induce phosphorylation of vimentin monomers and reorganization of the vimentin filament network in breast and anaplastic thyroid cancer cells. We also found vimentin to mediate the anti-migratory effect of S1P/SPC on these cells. The Hippo pathway is a novel signalling cascade which controls cancer-related processes such as cellular proliferation and survival in response to various extracellular signals. The core of the pathway consists of the transcriptional regulators YAP and TAZ, which activate predominantly cancer-promoting genes, and the tumour suppressive kinases Lats1 and Lats2 which inhibit YAP/TAZ. Increased YAP expression and activity has been reported for a wide variety of cancers. We found SPC to regulate Hippo signalling in breast cancer cells in a two-fold manner through effects on phosphorylation status, activity and/or expression of YAP and Lats2. In conclusion, this thesis reveals new details of the signalling function of S1P and SPC and regulation of the central oncogenic factors HIF-1 and vimentin as well as the novel cancer-related pathway Hippo.