11 resultados para Bacterial biofilms

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Farmaseuttinen aikakauskirja Dosis 30 v. 1984-2014.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bacteria can exist as planktonic, the lifestyle in which single cells exist in suspension, and as biofilms, which are surface-attached bacterial communities embedded in a selfproduced matrix. Most of the antibiotics and the methods for antimicrobial work have been developed for planktonic bacteria. However, the majority of the bacteria in natural habitats live as biofilms. Biofilms develop dauntingly fast high resistance towards conventional antibacterial treatments and thus, there is a great need to meet the demands of effective anti-biofilm therapy. In this thesis project it was attempted to fill the void of anti-biofilm screening methods by developing a platform of assays that evaluate the effect that screened compounds have on the total biomass, viability and the extracellular polysaccharide (EPS) layer of the biofilms. Additionally, a new method for studying biofilms and their interactions with compounds in a continuous flow system was developed using capillary electrochromatography (CEC). The screening platform was utilized with a screening campaign using a small library of cinchona alkaloids. The assays were optimized to be statistically robust enough for screening. The first assay, based on crystal violet staining, measures total biofilm biomass, and it was automated using a liquid handling workstation to decrease the manual workload and signal variation. The second assay, based on resazurin staining, measures viability of the biofilm, and it was thoroughly optimized for the strain used, but was then a very simple and fast method to be used for primary screening. The fluorescent resazurin probe is not toxic to the biofilms. In fact, it was also shown in this project that staining the biofilms with resazurin prior to staining with crystal violet had no effect on the latter and they can be used in sequence on the same screening plate. This sequential addition step was indeed a major improvement on the use of reagents and consumables and also shortened the work time. As a third assay in the platform a wheat germ agglutinin based assay was added to evaluate the effect a compound has on the EPS layer. Using this assay it was found that even if compounds might have clear effect on both biomass and viability, the EPS layer can be left untouched or even be increased. This is a clear implication of the importance of using several assays to be able to find “true hits” in a screening setting. In the pilot study of screening for antimicrobial and anti-biofilm effects using a cinchona alkaloid library, one compound was found to have antimicrobial effect against planktonic bacteria and prevent biofilm formation at low micromolar concentration. To eradicate biofilms, a higher concentration was needed. It was also shown that the chemical space occupied by the active compound was slightly different than the rest of the cinchona alkaloids as well as the rest of the compounds used for validatory screening during the optimization processes of the separate assays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is axiomatic that our planet is extensively inhabited by diverse micro-organisms such as bacteria, yet the absolute diversity of different bacterial species is widely held to be unknown. Different bacteria can be found from the depths of the oceans to the top of the mountains; even the air is more or less colonized by bacteria. Most bacteria are either harmless or even advantageous to human beings but there are also bacteria, which can cause severe infectious diseases or spoil the supplies intended for human consumption. Therefore, it is vitally important not only to be able to detect and enumerate bacteria but also to assess their viability and possible harmfulness. Whilst the growth of bacteria is remarkably fast under optimum conditions and easy to detect by cultural methods, most bacteria are believed to lie in stationary phase of growth in which the actual growth is ceased and thus bacteria may simply be undetectable by cultural techniques. Additionally, several injurious factors such as low and high temperature or deficiency of nutrients can turn bacteria into a viable but non-culturable state (VBNC) that cannot be detected by cultural methods. Thereby, various noncultural techniques developed for the assessment of bacterial viability and killing have widely been exploited in modern microbiology. However, only a few methods are suitable for kinetic measurements, which enable the real-time detection of bacterial growth and viability. The present study describes alternative methods for measuring bacterial viability and killing as well as detecting the effects of various antimicrobial agents on bacteria on a real-time basis. The suitability of bacterial (lux) and beetle (luc) luciferases as well as green fluorescent protein (GFP) to act as a marker of bacterial viability and cell growth was tested. In particular, a multiparameter microplate assay based on GFP-luciferase combination as well as a flow cytometric measurement based on GFP-PI combination were developed to perform divergent viability analyses. The results obtained suggest that the antimicrobial activities of various drugs against bacteria could be successfully measured using both of these methods. Specifically, the data reliability of flow cytometric viability analysis was notably improved as GFP was utilized in the assay. A fluoro-luminometric microplate assay enabled kinetic measurements, which significantly improved and accelerated the assessment of bacterial viability compared to more conventional viability assays such as plate counting. Moreover, the multiparameter assay made simultaneous detection of GFP fluorescence and luciferase bioluminescence possible and provided extensive information about multiple cellular parameters in single assay, thereby increasing the accuracy of the assessment of the kinetics of antimicrobial activities on target bacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polysialic acid is a carbohydrate polymer which consist of N-acetylneuraminic acid units joined by alpha2,8-linkages. It is developmentally regulated and has an important role during normal neuronal development. In adults, it participates in complex neurological processes, such as memory, neural plasticity, tumor cell growth and metastasis. Polysialic acid also constitutes the capsule of some meningitis and sepsis-causing bacteria, such as Escherichia coli K1, group B meningococci, Mannheimia haemolytica A2 and Moraxella nonliquefaciens. Polysialic acid is poorly immunogenic; therefore high affinity antibodies against it are difficult to prepare, thus specific and fast detection methods are needed. Endosialidase is an enzyme derived from the E. coli K1 bacteriophage, which specifically recognizes and degrades polysialic acid. In this study, a novel detection method for polysialic acid was developed based on a fusion protein of inactive endosialidase and the green fluorescent protein. It utilizes the ability of the mutant, inactive endosialidase to bind but not cleave polysialic acid. Sequencing of the endosialidase gene revealed that amino acid substitutions near the active site of the enzyme differentiate the active and inactive forms of the enzyme. The fusion protein was applied for the detection of polysialic acid in bacteria and neuroblastoma. The results indicate that the fusion protein is a fast, sensitive and specific reagent for the detection of polysialic acid. The use of an inactive enzyme as a specific molecular tool for the detection of its substrate represents an approach which could potentially find wide applicability in the specific detection of diverse macromolecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CBS domains are ~60 amino acid tandemly repeated regulatory modules forming a widely distributed domain superfamily. Found in thousands of proteins from all kingdoms of life, CBS domains have adopted a variety of functions during evolution, one of which is regulation of enzyme activity through binding of adenylate-containing compounds in a hydrophobic cavity. Mutations in human CBS domain-containing proteins cause hereditary diseases. Inorganic pyrophosphatases (PPases) are ubiquitous enzymes, which pull pyrophosphate (PPi) producing reactions forward by hydrolyzing PPi into phosphate. Of the two nonhomologous soluble PPases, dimeric family II PPases, belonging to the DHH family of phosphoesterases, require a transition metal and magnesium for maximal activity. A quarter of the almost 500 family II PPases, found in bacteria and archaea, contain a 120-250 amino acid N-terminal insertion, comprised of two CBS domains separated in sequence by a DRTGG domain. These enzymes are thus named CBS-PPases. The function of the DRTGG domain in proteins is unknown. The aim of this PhD thesis was to elucidate the structural and functional differences of CBS-PPases in comparison to family II PPases lacking the regulatory insert. To this end, we expressed, purified and characterized the CBS-PPases from Clostridium perfringens (cpCBS-PPase) and Moorella thermoacetica (mtCBS-PPase), the latter lacking a DRTGG domain. Both enzymes are homodimers in solution and display maximal activity against PPi in the presence of Co2+ and Mg2+. Uniquely, the DRTGG domain was found to enable tripolyphosphate hydrolysis at rates similar to that of PPi. Additionally, we found that AMP and ADP inhibit, while ATP and AP4A activate CBSPPases, thus enabling regulation in response to changes in cellular energy status. We then observed substrate- and nucleotide-induced conformational transitions in mtCBS-PPase and found that the enzyme exists in two differentially active conformations, interconverted through substrate binding and resulting in a 2.5-fold enzyme activation. AMP binding was shown to produce an alternate conformation, which is reached through a different pathway than the substrate-induced conformation. We solved the structure of the regulatory insert from cpCBS-PPase in complex with AMP and AP4A and proposed that conformational changes in the loops connecting the catalytic and regulatory domains enable activity regulation. We examined the effects of mutations in the CBS domains of mtCBS-PPase on catalytic activity, as well as, nucleotide binding and inhibition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Streptococcus suis is an important pig pathogen but it is also zoonotic, i.e. capable of causing diseases in humans. Human S. suis infections are quite uncommon but potentially life-threatening and the pathogen is an emerging public health concern. This Gram-positive bacterium possesses a galabiose-specific (Galalpha1−4Gal) adhesion activity, which has been studied for over 20 years. P-fimbriated Escherichia coli−bacteria also possess a similar adhesin activity targeting the same disaccharide. The galabiose-specific adhesin of S. suis was identified by an affinity proteomics method. No function of the protein identified was formerly known and it was designated streptococcal adhesin P (SadP). The peptide sequence of SadP contains an LPXTG-motif and the protein was proven to be cell wall−anchored. SadP may be multimeric since in SDS-PAGE gel it formed a protein ladder starting from about 200 kDa. The identification was confirmed by producing knockout strains lacking functional adhesin, which had lost their ability to bind to galabiose. The adhesin gene was cloned in a bacterial expression host and properties of the recombinant adhesin were studied. The galabiose-binding properties of the recombinant protein were found to be consistent with previous results obtained studying whole bacterial cells. A live-bacteria application of surface plasmon resonance was set up, and various carbohydrate inhibitors of the galabiose-specific adhesins were studied with this assay. The potencies of the inhibitors were highly dependent on multivalency. Compared with P-fimbriated E. coli, lower concentrations of galabiose derivatives were needed to inhibit the adhesion of S. suis. Multivalent inhibitors of S. suis adhesion were found to be effective at low nanomolar concentrations. To specifically detect galabiose adhesin−expressing S. suis bacteria, a technique utilising magnetic glycoparticles and an ATP bioluminescence bacterial detection system was also developed. The identification and characterisation of the SadP adhesin give valuable information on the adhesion mechanisms of S. suis, and the results of this study may be helpful for the development of novel inhibitors and specific detection methods of this pathogen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biofilms are surface-attached multispecies microbial communities that are embedded by their self-produced extracellular polymeric substances. This lifestyle enhances the survival of the bacteria and plays a major role in many chronic bacterial infections. For instance, periodontitis is initiated by multispecies biofilms. The phases of active periodontal tissue destruction and notably increased levels of proinflammatory mediators, such as the key inflammatory mediator interleukin (IL)-1beta, are typical of the disease. The opportunistic periodontal pathogen Aggregatibacter actinomycetemcomitans is usually abundant at sites of aggressive periodontitis. Despite potent host immune system responses to subgingival invaders, A. actinomycetemcomitans is able to resist clearance attempts. Moreover, some strains of A. actinomycetemcomitans can generate genetic diversity through natural transformation, which may improve the species’ adjustment tothe subgingival environment in the long term. Some biofilm forming species are known to bind and sense human cytokines. As a response to cytokines, bacteria may increase biofilm formation and alter their expression of virulence genes. Specific outer membrane receptors for interferon-γ or IL-1β have been characterised in two Gram-negative pathogens. Because little is known about periodontal pathogens’ ability to sense cytokines, we used A. actinomycetemcomitans as a model organism to investigate how the species responds to IL-1beta. The main aims of this thesis were to explore cytokine binding on single-species A. actinomycetemcomitans biofilms and to determine the effects of cytokines on the biofilm formation and metabolic activity of the species. Additionally, the cytokine’s putative internalisation and interaction with A. actinomycetemcomitans proteins were studied. The possible impact of biofilm IL-1beta sequestering on the proliferation and apoptosis of gingival keratinocyte cells was evaluated in an organotypic mucosa co-culture model. Finally, the role of the extramembranous domain of the outer membrane protein HofQ (emHofQ) in DNA binding linked to DNA uptake in A. actinomycetemcomitans was examined. Our main finding revealed that viable A. actinomycetemcomitans biofilms can bind and take up the IL-1β produced by gingival cells. At the sites of pathogen-host interaction, the proliferation and apoptosis of gingival keratinocytes decreased slightly. Notably, the exposure of biofilms to IL-1beta caused their metabolic activity to drop, which may be linked to the observed interaction of IL-1beta with the conserved intracellular proteins DNA binding protein HU and the trimeric form of ATP synthase subunit beta. A Pasteurellaceaespecific lipoprotein, which had no previously determined function, was characterized as an IL-1beta interacting membrane protein that was expressed in the biofilm cultures of all tested A. actinomycetemcomitans strains. The use of a subcellular localisation tool combined with experimental analyses suggested that the identified lipoprotein, bacterial interleukin receptor I (BilRI), may be associated with the outer membrane with a portion of the protein oriented towards the external milieu. The results of the emHofQ study indicated that emHofQ has both the structural and functional capability to bind DNA. This result implies that emHofQ plays a role in DNA assimilation. The results from the current study also demonstrate that the Gram-negative oral species appears to sense the central proinflammatory mediator IL-1beta.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Baltic Sea is unique by its biological, geochemical and physical features. The number of species of larger organisms is small and the species composition is distinctive. On the contrary microbial communities are diverse. Because of the low salinity levels, bacterial communities differ from the ones in the oceans. Knowing the structure of these communities better and how they response to different environmental conditions helps us to estimate how different factors affect the balance and function of the Baltic Sea ecosystem. Bacteria are the key players when it comes to natural biogeochemical processes and human-induced phenomena like eutrophication, oil spills or disposal of other harmful substances to the sea ecosystem. In this thesis, bacterial community structure in the sea surface microlayer and subsurface water of the Archipelago Sea were compared. In addition, the effect of diatom derived polyunsaturated aldehydes on bacterial community structure was studied by a mesocosm experiment. Diesel, crude oil and polycyclic aromatic hydrocarbon degradation capacity of the Baltic Sea bacteria was studied in smaller scale microcosm experiments. In diesel oil experiments bacteria from water phase of the Archipelago Sea was studied. Sediment and iron manganese concretions collected from the Gulf of Finland were used in the crude oil and polycyclic aromatic hydrocarbon experiments. The amount of polycyclic aromatic hydrocarbon degradation genes was measured in all of the oil degradation experiments. The results show how differences in bacterial community structure can be seen in the sea surface when compared to the subsurface waters. The mesocosm experiment demonstrated how diatom-bacteria interactions depend on other factors than diatom derived polyunsaturated aldehydes, which do not seem to have an effect on the bacterial community structure as has been suggested in earlier studies. The dominant bacterial groups in the diesel microcosms differed in samples taken from a pristine site when compared to a site with previous oil exposure in the Archipelago Sea area. Results of the study with sediment and iron-manganese concretions indicate that there are diverse bacterial communities, typical to each bottom type, inhabiting the bottoms of the Gulf of Finland capable to degrade oil and polycyclic aromatic hydrocarbon compounds.  

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tutkimuksen tavoitteena oli selvittää bakteerien kiinnittymistä ja bakteeribiofilmin muodostumista implanttimateriaalien pinnalla. Monoliittisen zirkonian ja lasikeramien käyttö implanttikruunujen materiaaleina kasvaa jatkuvasti. Zirkoniaa käytetään myös abutmenttien materiaalina esteettisillä alueilla. Tällä hetkellä on vain vähän tutkimustietoa näiden implanttikruunumateriaalien sekä implanttikruunujen sementoimiseen käytetyn sementin pinnalla tapahtuvasta bakteeriadheesiosta ja biofilmin muodostumisesta. Bakteerien adheesiota ja biofilmin muodistumista tutkittiin neljän eri materiaalin pinnalla. Tutkimuksessa käytetyt materiaalit olivat: (1) Litiumdisilikaatti (LDS; IPS e.max CAD, Ivoclar Vivadent,kontrolli), (2) Kokonaan stabiloitu zirkonia (FSZ; Prettau Anterior, Zirkonzahn), (3) Osittain stabiloitu zirkonia (PSZ; Katana, Noritake), ja (4) Kaksoiskovetteinen sementti (DCC; Multilink hybrid abutment cement, Ivoclar Vivadent). Kaikki tutkimuksessa käytetyt materiaalit valmisteltiin ja kiillotettiin valmistajien ohjeiden mukaisesti Tutkittavat pinnat inkuboitiin Streptococcus mutans-suspensiossa +37°C:ssä asteessa. Bakteeriadheesiotestissä inkubointiaika oli 30 minuuttia ja biofilmitestissä vastaava aika oli 24 tuntia. Materiaalien pintoja tarkasteltiin myös elektronimikroskooppia käyttäen. Tutkimuksessa todettiin, että bakteeriadheesiossa oli eroja eri materiaalien välillä. Biofilmin. muodostumisessa ei todettu tilastollisesti merkittäviä eroja tutkittavien materiaalien välillä.