3 resultados para BIOGEOGRAPHICAL ANCESTRY
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
In my thesis I discuss the elements of my professional identity from the perspective of an actor, a director and a team. What are acting and directing to me? What are the problems in the symbiosis of acting and directing? What are the difficulties in acting and directing and how important are the issues related to responsibility, power, trust and confidence in my work? I also discuss the consept of self-confidence. Behind all of this, there is also the thought of my ancestry and its dualism, how my roots from my father's and mother's side are struggling against each other or supporting each other, and how they affect my professional identity. The basic idea in the present thesis is the perspective of the traditional theatre and a professional team. Also the childhood influence on my professional identity is being considered. Education is discussed at the end. Moreover, a discussion on the kind of future theatre maker I want to be considered as, is included. I also try to handle all these topics through Harri Virtanen's Kiinteistövälittäjä vastoin tahtoaan (2005), which I directed, and my latest role in Arto Paasilinna's and Kristian Smeds' Jäniksen vuosi (2006). The conclusion of the present thesis is that it is very important for me to be a member of different communities, in which I can express my professional identity. My professional identity is formed by many elements that support each other. Such elements in their own right form an inticate relationship, which at the end, makes me what I am. In conclusion, I am a theatre maker, who in an alternative field of theater has opportunities to form the professional identity, as different situations and projects require.
Resumo:
This thesis examines the local and regional scale determinants of biodiversity patterns using existing species and environmental data. The research focuses on agricultural environments that have experienced rapid declines of biodiversity during past decades. Existing digital databases provide vast opportunities for habitat mapping, predictive mapping of species occurrences and richness and understanding the speciesenvironment relationships. The applicability of these databases depends on the required accuracy and quality of the data needed to answer the landscape ecological and biogeographical questions in hand. Patterns of biodiversity arise from confounded effects of different factors, such as climate, land cover and geographical location. Complementary statistical approaches that can show the relative effects of different factors are needed in biodiversity analyses in addition to classical multivariate models. Better understanding of the key factors underlying the variation in diversity requires the analyses of multiple taxonomic groups from different perspectives, such as richness, occurrence, threat status and population trends. The geographical coincidence of species richness of different taxonomic groups can be rather limited. This implies that multiple geographical regions should be taken into account in order to preserve various groups of species. Boreal agricultural biodiversity and in particular, distribution and richness of threatened species is strongly associated with various grasslands. Further, heterogeneous agricultural landscapes characterized by moderate field size, forest patches and non-crop agricultural habitats enhance the biodiversity of rural environments. From the landscape ecological perspective, the major threats to Finnish agricultural biodiversity are the decline of connected grassland habitat networks, and general homogenization of landscape structure resulting from both intensification and marginalization of agriculture. The maintenance of key habitats, such as meadows and pastures is an essential task in conservation of agricultural biodiversity. Furthermore, a larger landscape context should be incorporated in conservation planning and decision making processes in order to respond to the needs of different species and to maintain heterogeneous rural landscapes and viable agricultural diversity in the future.
Resumo:
Biodiversity is unequally spread throughout terrestrial ecosystems. The highest species richness of animals and plants is encountered around the Equator, and naturalists observe a decrease in the number of creatures with increasing latitude. Some animal groups, however, display an anomalous species richness pattern, but these are exceptions to the general rule. Crane flies (Diptera, Tipuloidea) are small to large sized, non-biting nematoceran insects, being mainly associated with moist environments. The species richness of crane flies is highest in the tropics, but these insects are species rich and abundant in all biogeographic realms, boreal and arctic biomes included. The phylogeny and systematics of crane flies are still at an early stage and somewhat controversial. New species are constantly discovered even from temperate Europe, faunistically the best known continent. Crane flies have been rather neglected group of insects in Finland. The history of Finnish crane fly taxonomy and faunistics started in 1907, the year when Carl Lundström published his two first articles on tipuloids. Within roughly 100 years there have been only a handful of entomologists studying the Finnish fauna, and the species richness and natural history of these flies have remained poorly understood and mapped. The aim of this thesis is to clarify the taxonomy of Finnish crane flies, present an updated and annotated list of species and seek patterns in regional species richness and assemblage composition. Tipula stackelbergi Alexander has been revised (I). This species was elevated to a species rank from a subspecific rank under T. pruinosa Wiedemann and T. stackelbergi was also deleted from the list of European crane flies. Two new synonyms were found: T. subpruinosa Mannheims is a junior synonym of T. freyana Lackschewitz and T. usuriensis Alexander is a junior synonym of T. pruinosa. A new species Tipula recondita Pilipenko & Salmela has been described (II). Both morphology and COI (mtDNA) sequences were used in the assessment of the status of the species. The new species is highly disjunct, known from Finland and Russian Far East. A list of Finnish crane flies was presented, including the presence of species in the Finnish biogeographical provinces (III). A total of twenty-four species were formally reported for the first time from Finland and twenty-two previously reported species were deleted from the list. A short historical review on the studies of Finnish crane flies has been provided. The current list of Finnish species consists of 338 crane flies (IV, Appendix I). Species richness of all species and saproxylic/fungivorous species is negatively correlated with latitude, but mire-dwelling species show a reversed species richness gradient (i.e. an increase in the number of species toward north). Provincial assemblages displayed a strong latitudinal gradient and faunistic distance increased with increasing geographical distance apart of the provinces. Nearly half (48 %) of the Finnish crane flies are Trans-Palaearctic, roughly one-third (34 %) are West Palaearctic and only 16 and 2 % are Holarctic and Fennoscandian, respectively. Due to the legacy of Pleistocene glaciations, endemic Fennoscandian species are problematic and it is thus concluded that there are probably no true endemic crane flies in this region. Finally, there are probably species living within Finnish borders that have hitherto remained unnoticed. Based on subjective assessment, the number of “true” (i.e. recorded + unknown species) species count of Finnish crane flies is at minimum 350.