3 resultados para Auto-correlation function
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
The uncertainty of any analytical determination depends on analysis and sampling. Uncertainty arising from sampling is usually not controlled and methods for its evaluation are still little known. Pierre Gy’s sampling theory is currently the most complete theory about samplingwhich also takes the design of the sampling equipment into account. Guides dealing with the practical issues of sampling also exist, published by international organizations such as EURACHEM, IUPAC (International Union of Pure and Applied Chemistry) and ISO (International Organization for Standardization). In this work Gy’s sampling theory was applied to several cases, including the analysis of chromite concentration estimated on SEM (Scanning Electron Microscope) images and estimation of the total uncertainty of a drug dissolution procedure. The results clearly show that Gy’s sampling theory can be utilized in both of the above-mentioned cases and that the uncertainties achieved are reliable. Variographic experiments introduced in Gy’s sampling theory are beneficially applied in analyzing the uncertainty of auto-correlated data sets such as industrial process data and environmental discharges. The periodic behaviour of these kinds of processes can be observed by variographic analysis as well as with fast Fourier transformation and auto-correlation functions. With variographic analysis, the uncertainties are estimated as a function of the sampling interval. This is advantageous when environmental data or process data are analyzed as it can be easily estimated how the sampling interval is affecting the overall uncertainty. If the sampling frequency is too high, unnecessary resources will be used. On the other hand, if a frequency is too low, the uncertainty of the determination may be unacceptably high. Variographic methods can also be utilized to estimate the uncertainty of spectral data produced by modern instruments. Since spectral data are multivariate, methods such as Principal Component Analysis (PCA) are needed when the data are analyzed. Optimization of a sampling plan increases the reliability of the analytical process which might at the end have beneficial effects on the economics of chemical analysis,
Resumo:
Positron emission tomography imaging has both academic and applied uses in revealing the distribution and density of different molecular targets in the central nervous system. Following the significant progress made with the dopamine D2 receptor, advances have been made in developing PET tracers to allow analysis of receptor occupancy of many other receptor types as well as evaluating changes in endogenous synaptic transmitter concentrations of transmitters e.g. serotonin and noradrenaline. Noradrenergic receptors are divided into α1-, α2- and β-adrenoceptor subfamilies, in humans each of which is composed of three receptor subtypes. The α2-adrenoceptors have an important presynaptic auto-inhibitory function on noradrenaline release but they also have postsynaptic roles in modulating the release of other neurotransmitters, such as serotonin and dopamine. One of the subtypes, the α2C-adrenoceptor, has been detected at distinct locations in the central nervous system, most notably the dorsal striatum. Several serious neurological conditions causing dementia, Alzheimer’s disease and Parkinson’s disease have been linked to disturbed noradrenergic signaling. Furthermore, altered noradrenergic signaling has also been implicated in conditions like ADHD, depression, anxiety and schizophrenia. In order to benefit future research into these central nervous system disorders as well as being useful in the clinical development of drugs affecting brain noradrenergic neurotransmission, validation work of a novel tracer for positron emission tomography studies in humans was performed. Altogether 85 PET imaging experiments were performed during four separate clinical trials. The repeatability of [11C]ORM-13070 binding was tested in healthy individuals, followed by a study to evaluate the dose-dependent displacement of [11C]ORM-13070 from α2C-adrenoceptors by a competing ligand, and the final two studies examined the sensitivity of [11C]ORM-13070 binding to reflect changes in endogenous noradrenaline levels. The repeatability of [11C]ORM-13070 binding was very high. The binding properties of the tracer allowed for a reliable estimation of α2C-AR occupancy by using the reference tissue ratio method with low test-retest variability. [11C]ORM-13070 was dose-dependently displaced from its specific binding sites by the subtype-nonselective α2-adrenoceptor antagonist atipamezole, and thus it proved suitable for use in clinical drug development of novel α2C-adrenoceptor ligands e.g. to determine the best doses and dosing intervals for clinical trials. Convincing experimental evidence was gained to support the suitability of [11C]ORM-13070 for detecting an increase in endogenous synaptic noradrenaline in the human brain. Tracer binding in the thalamus tended to increase in accordance with reduced activity of noradrenergic projections from the locus coeruleus, although statistical significance was not reached. Thus, the investigation was unable to fully validate [11C]ORM-13070 for the detection of pharmacologically evoked reductions in noradrenaline levels.
Resumo:
Transcription factors play a crucial role in the regulation of cell behavior by modulating gene expression profiles. Previous studies have described a dual role for the AP-1 family transcription factor c-Jun in the regulation of cellular fate. In various cell types weak and transient activations of c-Jun N-terminal kinase (JNK) and c-Jun appear to contribute to proliferation and survival, whereas strong and prolonged activation of JNK and c-Jun result in apoptosis. These opposite roles played by c-Jun are cell type specific and the molecular mechanisms defining these antonymous c-Jun-mediated responses remain incompletely understood. c-Jun activity in transformed cells is regulated by signalling cascades downstream of oncoproteins such as Ras and Raf. In addition, the pro-proliferative role and the survival promoting function for c-Jun has been described in various cancer models. Furthermore, c-Jun was described to be overexpressed in different cancer types. However, the molecular mechanisms by which c-Jun exerts these oncogenic functions are not all clearly established. Therefore it is of primary interest to further identify molecular mechanisms and functions for c-Jun in cancer. Regulation of gene expression is tightly dependent on accurate protein-protein interactions. Therefore, co-factors for c-Jun may define the functions for c-Jun in cancer. Identification of protein-protein interactions promoting cancer may provide novel possibilities for cancer treatment. In this study, we show that DNA topoisomerase I (TopoI) is a transcriptional co-factor for c-Jun. Moreover, c-Jun and TopoI together promote expression of epidermal growth factor receptor (EGFR) in cancer cells. We also show that the clinically used TopoI inhibitor topotecan reduces EGFR expression. Importantly, the effect of TopoI on EGFR transcription was shown to depend on c-Jun as Jun-/- cells or cells treated with JNK inhibitor SP600125 are resistant to topotecan treatment both in regulation of EGFR expression and cell proliferation. Moreover, c-Jun regulates the nucleolar localization and the function of the ribonucleic acid (RNA) helicase DDX21, a previously identified member of c-Jun protein complex. In addition, c-Jun stimulates rRNA processing by supporting DDX21 rRNA binding. Finally, this study characterizes a DDX21 dependent expression of cyclin dependent kinase (Cdk) 6, a correlation of DDX21 expression with prostate cancer progression and a substrate binding dependency of DDX21 nucleolar localization in prostate cancer cells. Taken together, the results of this study validate the c-Jun-TopoI interaction and precise the c-Jun-DDX21 interaction. Moreover, these results show the importance for protein-protein interaction in the regulation of their cellular functions in cancer cell behavior. Finally, the results presented here disclose new exciting therapeutic opportunities for cancer treatment.