2 resultados para Atomic ratio, Maximum
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
The main focus of this thesis is to define the field weakening point of permanent magnet synchronous machine with embedded magnets in traction applications. Along with the thesis a modelling program is made to help the designer to define the field weakening point in practical applications. The thesis utilizes the equations based on the current angle. These equations can be derived from the vector diagram of permanent magnet synchronous machine. The design parameters of the machine are: The maximum rotational speed, saliency ratio, maximum induced voltage and characteristic current. The main result of the thesis is finding out the rated rotational speed, from which the field weakening starts. The action of the machine is estimated at a wide speed range and the changes of machine parameters are examined.
Resumo:
In this thesis the dynamics of cold gaseous atoms is studied. Two different atomic species and two different experimental techniques have been used. In the first part of the thesis experiments with Bose-Einstein condensates of Rb-87 are presented. In these experiments the methods of laser cooling and magnetic trapping of atoms were utilized. An atom chip was used as the experimental technique for implementation of magnetic trapping. The atom chip is a small integrated instrument allowing accurate and detailed manipulation of the atoms. The experiments with Rb-87 probed the behaviour of a falling beam of atoms outcoupled from the Bose-Einstein condensate by electromagnetic field induced spin flips. In the experiments a correspondence between the phases of the outcoupling radio frequency field and the falling beam of atoms was found. In the second part of the thesis experiments of spin dynamics in cold atomic hydrogen gas are discussed. The experiments with atomic hydrogen are conducted in a cryostat using a dilution refrigerator as the cooling method. These experiments concentrated on explaining and quantifying modulations in the electron spin resonance spectra of doubly polarized atomic hydrogen. The modifications to the previous experimental setup are described and the observation of electron spin waves is presented. The observed spin wave modes were caused by the identical spin rotation effect. These modes have a strong dependence on the spatial profile of the polarizing magnetic field. We also demonstrated confinement of these modes in regions of strong magnetic field and manipulated their spatial distribution by changing the position of the field maximum.