26 resultados para Associative Classifier

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The energy consumption of IT equipments is becoming an issue of increasing importance. In particular, network equipments such as routers and switches are major contributors to the energy consumption of internet. Therefore it is important to understand how the relationship between input parameters such as bandwidth, number of active ports, traffic-load, hibernation-mode and their impact on energy consumption of a switch. In this paper, the energy consumption of a switch is analyzed in extensive experiments. A fuzzy rule-based model of energy consumption of a switch is proposed based on the result of experiments. The model can be used to predict the energy saving when deploying new switches by controlling the parameters to achieve desired energy consumption and subsequent performance. Furthermore, the model can also be used for further researches on energy saving techniques such as energy-efficient routing protocol, dynamic link shutdown, etc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Illnesses related to the heart are one of the major reasons for death all over the world causing many people to lose their lives in last decades. The good news is that many of those sicknesses are preventable if they are spotted in early stages. On the other hand, the number of the doctors are much lower than the number of patients. This will makes the auto diagnosing of diseases even more and more essential for humans today. Furthermore, when it comes to the diagnosing methods and algorithms, the current state of the art is lacking a comprehensive study on the comparison between different diagnosis solutions. Not having a single valid diagnosing solution has increased the confusion among scholars and made it harder for them to take further steps. This master thesis will address the issue of reliable diagnosing algorithm. We investigate ECG signals and the relation between different diseases and the heart’s electrical activity. Also, we will discuss the necessary steps needed for auto diagnosing the heart diseases including the literatures discussing the topic. The main goal of this master thesis is to find a single reliable diagnosing algorithm and quest for the best classifier to date for heart related sicknesses. Five most suited and most well-known classifiers, such as KNN, CART, MLP, Adaboost and SVM, have been investigated. To have a fair comparison, the ex-periment condition is kept the same for all classification methods. The UCI repository arrhythmia dataset will be used and the data will not be preprocessed. The experiment results indicates that AdaBoost noticeably classifies different diseases with a considera-bly better accuracy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The research of condition monitoring of electric motors has been wide for several decades. The research and development at universities and in industry has provided means for the predictive condition monitoring. Many different devices and systems are developed and are widely used in industry, transportation and in civil engineering. In addition, many methods are developed and reported in scientific arenas in order to improve existing methods for the automatic analysis of faults. The methods, however, are not widely used as a part of condition monitoring systems. The main reasons are, firstly, that many methods are presented in scientific papers but their performance in different conditions is not evaluated, secondly, the methods include parameters that are so case specific that the implementation of a systemusing such methods would be far from straightforward. In this thesis, some of these methods are evaluated theoretically and tested with simulations and with a drive in a laboratory. A new automatic analysis method for the bearing fault detection is introduced. In the first part of this work the generation of the bearing fault originating signal is explained and its influence into the stator current is concerned with qualitative and quantitative estimation. The verification of the feasibility of the stator current measurement as a bearing fault indicatoris experimentally tested with the running 15 kW induction motor. The second part of this work concentrates on the bearing fault analysis using the vibration measurement signal. The performance of the micromachined silicon accelerometer chip in conjunction with the envelope spectrum analysis of the cyclic bearing faultis experimentally tested. Furthermore, different methods for the creation of feature extractors for the bearing fault classification are researched and an automatic fault classifier using multivariate statistical discrimination and fuzzy logic is introduced. It is often important that the on-line condition monitoring system is integrated with the industrial communications infrastructure. Two types of a sensor solutions are tested in the thesis: the first one is a sensor withcalculation capacity for example for the production of the envelope spectra; the other one can collect the measurement data in memory and another device can read the data via field bus. The data communications requirements highly depend onthe type of the sensor solution selected. If the data is already analysed in the sensor the data communications are needed only for the results but in the other case, all measurement data need to be transferred. The complexity of the classification method can be great if the data is analysed at the management level computer, but if the analysis is made in sensor itself, the analyses must be simple due to the restricted calculation and memory capacity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Due to the large number of characteristics, there is a need to extract the most relevant characteristicsfrom the input data, so that the amount of information lost in this way is minimal, and the classification realized with the projected data set is relevant with respect to the original data. In order to achieve this feature extraction, different statistical techniques, as well as the principal components analysis (PCA) may be used. This thesis describes an extension of principal components analysis (PCA) allowing the extraction ofa finite number of relevant features from high-dimensional fuzzy data and noisy data. PCA finds linear combinations of the original measurement variables that describe the significant variation in the data. The comparisonof the two proposed methods was produced by using postoperative patient data. Experiment results demonstrate the ability of using the proposed two methods in complex data. Fuzzy PCA was used in the classificationproblem. The classification was applied by using the similarity classifier algorithm where total similarity measures weights are optimized with differential evolution algorithm. This thesis presents the comparison of the classification results based on the obtained data from the fuzzy PCA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tässä työssä raportoidaan hybridihitsauksesta otettujen suurnopeuskuvasarjojen automaattisen analyysijärjestelmän kehittäminen.Järjestelmän tarkoitus oli tuottaa tietoa, joka avustaisi analysoijaa arvioimaan kuvatun hitsausprosessin laatua. Tutkimus keskittyi valokaaren taajuuden säännöllisyyden ja lisäainepisaroiden lentosuuntien mittaamiseen. Valokaaria havaittiin kuvasarjoista sumean c-means-klusterointimenetelmän avullaja perättäisten valokaarien välistä aikaväliä käytettiin valokaaren taajuuden säännöllisyyden mittarina. Pisaroita paikannettiin menetelmällä, jossa yhdistyi pääkomponenttianalyysi ja tukivektoriluokitin. Kalman-suodinta käytettiin tuottamaan arvioita pisaroiden lentosuunnista ja nopeuksista. Lentosuunnanmääritysmenetelmä luokitteli pisarat niiden arvioitujen lentosuuntien perusteella. Järjestelmän kehittämiseen käytettävissä olleet kuvasarjat poikkesivat merkittävästi toisistaan kuvanlaadun ja pisaroiden ulkomuodon osalta, johtuen eroista kuvaus- ja hitsausprosesseissa. Analyysijärjestelmä kehitettiin toimimaan pienellä osajoukolla kuvasarjoja, joissa oli tietynlainen kuvaus- ja hitsausprosessi ja joiden kuvanlaatu ja pisaroiden ulkomuoto olivat samankaltaisia, mutta järjestelmää testattiin myös osajoukon ulkopuolisilla kuvasarjoilla. Testitulokset osoittivat, että lentosuunnanmääritystarkkuus oli kohtuullisen suuri osajoukonsisällä ja pieni muissa kuvasarjoissa. Valokaaren taajuuden säännöllisyyden määritys oli tarkka useammassa kuvasarjassa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis is about detection of local image features. The research topic belongs to the wider area of object detection, which is a machine vision and pattern recognition problem where an object must be detected (located) in an image. State-of-the-art object detection methods often divide the problem into separate interest point detection and local image description steps, but in this thesis a different technique is used, leading to higher quality image features which enable more precise localization. Instead of using interest point detection the landmark positions are marked manually. Therefore, the quality of the image features is not limited by the interest point detection phase and the learning of image features is simplified. The approach combines both interest point detection and local description into one phase for detection. Computational efficiency of the descriptor is therefore important, leaving out many of the commonly used descriptors as unsuitably heavy. Multiresolution Gabor features has been the main descriptor in this thesis and improving their efficiency is a significant part. Actual image features are formed from descriptors by using a classifierwhich can then recognize similar looking patches in new images. The main classifier is based on Gaussian mixture models. Classifiers are used in one-class classifier configuration where there are only positive training samples without explicit background class. The local image feature detection method has been tested with two freely available face detection databases and a proprietary license plate database. The localization performance was very good in these experiments. Other applications applying the same under-lying techniques are also presented, including object categorization and fault detection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Luokittelujärjestelmää suunniteltaessa tarkoituksena on rakentaa systeemi, joka pystyy ratkaisemaan mahdollisimman tarkasti tutkittavan ongelma-alueen. Hahmontunnistuksessa tunnistusjärjestelmän ydin on luokitin. Luokittelun sovellusaluekenttä on varsin laaja. Luokitinta tarvitaan mm. hahmontunnistusjärjestelmissä, joista kuvankäsittely toimii hyvänä esimerkkinä. Myös lääketieteen parissa tarkkaa luokittelua tarvitaan paljon. Esimerkiksi potilaan oireiden diagnosointiin tarvitaan luokitin, joka pystyy mittaustuloksista päättelemään mahdollisimman tarkasti, onko potilaalla kyseinen oire vai ei. Väitöskirjassa on tehty similaarisuusmittoihin perustuva luokitin ja sen toimintaa on tarkasteltu mm. lääketieteen paristatulevilla data-aineistoilla, joissa luokittelutehtävänä on tunnistaa potilaan oireen laatu. Väitöskirjassa esitetyn luokittimen etuna on sen yksinkertainen rakenne, josta johtuen se on helppo tehdä sekä ymmärtää. Toinen etu on luokittimentarkkuus. Luokitin saadaan luokittelemaan useita eri ongelmia hyvin tarkasti. Tämä on tärkeää varsinkin lääketieteen parissa, missä jo pieni tarkkuuden parannus luokittelutuloksessa on erittäin tärkeää. Väitöskirjassa ontutkittu useita eri mittoja, joilla voidaan mitata samankaltaisuutta. Mitoille löytyy myös useita parametreja, joille voidaan etsiä juuri kyseiseen luokitteluongelmaan sopivat arvot. Tämä parametrien optimointi ongelma-alueeseen sopivaksi voidaan suorittaa mm. evoluutionääri- algoritmeja käyttäen. Kyseisessä työssä tähän on käytetty geneettistä algoritmia ja differentiaali-evoluutioalgoritmia. Luokittimen etuna on sen joustavuus. Ongelma-alueelle on helppo vaihtaa similaarisuusmitta, jos kyseinen mitta ei ole sopiva tutkittavaan ongelma-alueeseen. Myös eri mittojen parametrien optimointi voi parantaa tuloksia huomattavasti. Kun käytetään eri esikäsittelymenetelmiä ennen luokittelua, tuloksia pystytään parantamaan.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Zinc selenide is a prospective material for optoelectronics. The fabrication of ZnSe­based light-emitting diodes is hindered by complexity of p-type doping of the component materials. The interaction between native and impurity defects, the tendency of doping impurity to form associative centres with native defects and the tendency to self-compensation are the main factors impeding effective control of the value and type of conductivity. The thesis is devoted to the study of the processes of interaction between native and impurity defects in zinc selenide. It is established that the Au impurity has the most prominent amphoteric properties in ZnSe among Cu, Ag and Au impurities, as it forms a great number of both Au; donors and Auz„ acceptors. Electrical measurements show that Ag and Au ions introduced into vacant sites of the Zn sublattice form simple single-charged Agz„+ and Auzn+ states with d1° electron configuration, while Cu ions can form both single-charged Cuz„ (d1) and double-charged Cuzr`+ (d`o) centres. Amphoteric properties of Ag and Au transition metals stimulated by time are found for the first time from both electrical and luminescent measurements. A model that explains the changes in electrical and luminescent parameters by displacement of Ag ions into interstitial sites due to lattice deformation forces is proposed. Formation of an Ag;-donor impurity band in ZnSe samples doped with Ag and stored at room temperature is also studied. Thus, the properties of the doped samples are modified due to large lattice relaxation during aging. This fact should be taken into account in optoelectronic applications of doped ZnSe and related compounds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis author approaches the problem of automated text classification, which is one of basic tasks for building Intelligent Internet Search Agent. The work discusses various approaches to solving sub-problems of automated text classification, such as feature extraction and machine learning on text sources. Author also describes her own multiword approach to feature extraction and pres-ents the results of testing this approach using linear discriminant analysis based classifier, and classifier combining unsupervised learning for etalon extraction with supervised learning using common backpropagation algorithm for multilevel perceptron.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Luokittuminen erilaisine mekanismeineen aiheuttaa yleisesti ongelmia, kun on kysymyksessä kiintoaineen väliaikainenkin varastointi siilossa. Sitä voidaan vähentää kiintoaineiden, prosessin ja laitesuunnittelun muutoksilla. Tässä työssä tutkittiin mahdollisuuksia vähentää ilmeniitin luokittumista sen jauhatuspiirin ilmakiertoa optimoimalla. Suljetun kuivajauhatuspiirin keskeisimmäksi laitteeksi voitaisiin ajatella siinä oleva luokitin, joka voi olla esim. sykloni. Tässä piirissä tapahtuva kiintoaineen liikkuminen voidaan saada aikaiseksi esim. pneumaattisella kuljetuksella. Ilmeniitin jauhatus tapahtuu suljetussa kuivajauhatuspiirissä, jonka ajavana voimana on siinä oleva ilmakierto. Piirin oleellisia laitteita ovat kuulamylly, luokitin, erotussykloni ja pölykaappi sekä kiertoilma- ja poistoilmapuhaltimet. Ilmakierron optimointia varten suoritettiin kahden vastaavan jauhatuspiirin ainetasemääritykset. Lisäksi määritettiin yhden isomman piirin perustila. Jauhatuspiirien ainetasemäärityksissä määritettiin niiden massa- ja ilmavirrat sekä kiertokuorma ja luokittimen erotusterävyys, kuten myös ilmeniitin hiukkaskokojakaumat. Perustilamittauksissa määritettiin ainoastaan piirin ilmavirrat ja ilmeniitin hiukkaskokojakaumat. Optimointimittauksissa pienennettiin pikkumyllypiirin ilmamäärät vastaamaan kutakuinkin vastaavan toisen piirin määriä. Tällä yritettiin selvittää näiden toisiaan vastaavien piirien ilmamäärien ja varsinkin kiertokuormien eroavuutta. Tämä ilmamäärien pienentäminen ei tuottanut mainittavampaa muutosta piirin ainetaseisiin, joten voitaneen todeta, että piirin ilmamääriä pienentämällä saadaan aikaiseksi säästöjä, lähinnä kiertoilmapuhaltimen tehon alennuksen kautta.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diplomityö on osa Mikkelin ammattikorkeakoulun YTI:ssä vuosina 2005 - 2008 toteutettua ”Yritysten ympäristöriskit” EU-osarahoitteista hanketta. Työn tarkoituksena oli tunnistaa, arvioida ja luokittaa Etelä-Savossa, Juvalla toimivan yhdyskuntajätevedenpuhdistamon ympäristöriskit sekä antaa neuvoja löytyneiden riskien hallintaan. Jätevedenpuhdistamon toiminnasta syntyvät mahdolliset ympäristöriskitekijät tunnistettiin kirjallisuusselvitysten sekä haastattelujen avulla. Riskien tunnistamisen jälkeen riskien kartoittamiseen, arviointiin ja luokittamiseen käytettiin osia eri riskianalyysimenetelmistä. Riskit jaettiin viiteen eri riskiluokkaan; vakavasta riskistä merkityksettömään riskiin. Juvan kunnan jätevedenpuhdistamolla esiintyi neljän pienimmän riskiluokan riskejä, ja vakavia riskejä ei kartoituksessa tullut esille lainkaan. Riskejä arvioitiin niin sanotuissa normaalioloissa. Merkittävin yksittäinen riskitekijä jätevedenpuhdistamolla oli haitallisen tai poikkeavan aineen kulkeutuminen jäteveden mukana puhdistamolle. Tämä voisi heikentää puhdistamon puhdistustulosta merkittävästi. Kun laitosta ajetaan ympäristöluvassa asetettujen vaatimusten mukaisesti ja alueella sijaitsevat teollisuuslaitokset noudattavat heille annettuja määräyksiä, ei Juvan jätevedenpuhdistamolta aiheudu merkittäviä päästöjä maa-perään tai pohjavesiin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Software testing is one of the essential parts in software engineering process. The objective of the study was to describe software testing tools and the corresponding use. The thesis contains examples of software testing tools usage. The study was conducted as a literature study, with focus on current software testing practices and quality assurance standards. In the paper a tool classifier was employed, and testing tools presented in study were classified according to it. We found that it is difficult to distinguish current available tools by certain testing activities as many of them contain functionality that exceeds scopes of a single testing type.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Monet teollisuuden konenäkö- ja hahmontunnistusongelmat ovat hyvin samantapaisia, jolloin prototyyppisovelluksia suunniteltaessa voitaisiin hyödyntää pitkälti samoja komponentteja. Oliopohjaiset sovelluskehykset tarjoavat erinomaisen tavan nopeuttaa ohjelmistokehitystä uudelleenkäytettävyyttä parantamalla. Näin voidaan sekä mahdollistaa konenäkösovellusten laajempi käyttö että säästää kustannuksissa. Tässä työssä esitellään konenäkösovelluskehys, joka on perusarkkitehtuuriltaan liukuhihnamainen. Ylätason rakenne koostuu sensorista, datankäsittelyoperaatioista, piirreirrottimesta sekä luokittimesta. Itse sovelluskehyksen lisäksi on toteutettu joukko kuvankäsittely- ja hahmontunnistusoperaatioita. Sovelluskehys nopeuttaa selvästi ohjelmointityötä ja helpottaa uusien kuvankäsittelyoperaatioiden lisää mistä.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main focus of the present thesis was at verbal episodic memory processes that are particularly vulnerable to preclinical and clinical Alzheimer’s disease (AD). Here these processes were studied by a word learning paradigm, cutting across the domains of memory and language learning studies. Moreover, the differentiation between normal aging, mild cognitive impairment (MCI) and AD was studied by the cognitive screening test CERAD. In study I, the aim was to examine how patients with amnestic MCI differ from healthy controls in the different CERAD subtests. Also, the sensitivity and specificity of the CERAD screening test to MCI and AD was examined, as previous studies on the sensitivity and specificity of the CERAD have not included MCI patients. The results indicated that MCI is characterized by an encoding deficit, as shown by the overall worse performance on the CERAD Wordlist learning test compared with controls. As a screening test, CERAD was not very sensitive to MCI. In study II, verbal learning and forgetting in amnestic MCI, AD and healthy elderly controls was investigated with an experimental word learning paradigm, where names of 40 unfamiliar objects (mainly archaic tools) were trained with or without semantic support. The object names were trained during a 4-day long period and a follow-up was conducted one week, 4 weeks and 8 weeks after the training period. Manipulation of semantic support was included in the paradigm because it was hypothesized that semantic support might have some beneficial effects in the present learning task especially for the MCI group, as semantic memory is quite well preserved in MCI in contrast to episodic memory. We found that word learning was significantly impaired in MCI and AD patients, whereas forgetting patterns were similar across groups. Semantic support showed a beneficial effect on object name retrieval in the MCI group 8 weeks after training, indicating that the MCI patients’ preserved semantic memory abilities compensated for their impaired episodic memory. The MCI group performed equally well as the controls in the tasks tapping incidental learning and recognition memory, whereas the AD group showed impairment. Both the MCI and the AD group benefited less from phonological cueing than the controls. Our findings indicate that acquisition is compromised in both MCI and AD, whereas long13 term retention is not affected to the same extent. Incidental learning and recognition memory seem to be well preserved in MCI. In studies III and IV, the neural correlates of naming newly learned objects were examined in healthy elderly subjects and in amnestic MCI patients by means of positron emission tomography (PET) right after the training period. The naming of newly learned objects by healthy elderly subjects recruited a left-lateralized network, including frontotemporal regions and the cerebellum, which was more extensive than the one related to the naming of familiar objects (study III). Semantic support showed no effects on the PET results for the healthy subjects. The observed activation increases may reflect lexicalsemantic and lexical-phonological retrieval, as well as more general associative memory mechanisms. In study IV, compared to the controls, the MCI patients showed increased anterior cingulate activation when naming newly learned objects that had been learned without semantic support. This suggests a recruitment of additional executive and attentional resources in the MCI group.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis, a classi cation problem in predicting credit worthiness of a customer is tackled. This is done by proposing a reliable classi cation procedure on a given data set. The aim of this thesis is to design a model that gives the best classi cation accuracy to e ectively predict bankruptcy. FRPCA techniques proposed by Yang and Wang have been preferred since they are tolerant to certain type of noise in the data. These include FRPCA1, FRPCA2 and FRPCA3 from which the best method is chosen. Two di erent approaches are used at the classi cation stage: Similarity classi er and FKNN classi er. Algorithms are tested with Australian credit card screening data set. Results obtained indicate a mean classi cation accuracy of 83.22% using FRPCA1 with similarity classi- er. The FKNN approach yields a mean classi cation accuracy of 85.93% when used with FRPCA2, making it a better method for the suitable choices of the number of nearest neighbors and fuzziness parameters. Details on the calibration of the fuzziness parameter and other parameters associated with the similarity classi er are discussed.