19 resultados para Assembled Synthetic Proteins
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
During mitotic cell division, the genetic material packed into chromosomes is divided equally between two daughter cells. Before the separation of the two copies of a chromosome (sister chromatids), each chromosome has to be properly connected with microtubules of the mitotic spindle apparatus and aligned to the centre of the cell. The spindle assembly checkpoint (SAC) monitors connections between microtubules and chromosomes as well as tension applied across the centromere. Microtubules connect to a chromosome via kinetochores, which are proteinaceous organelles assembled onto the centromeric region of the sister chromatids. Improper kinetochore-microtubule attachments activate the SAC and block chromosome segregation until errors are corrected and all chromosomes are connected to the mitotic spindle in a bipolar manner. The purpose of this surveillance mechanism is to prevent loss or gain of chromosomes in daughter cells that according to current understanding contributes to cancer formation. Numerous proteins participate in the regulation of mitotic progression. In this thesis, the mitotic tasks of three kinetochore proteins, Shugoshin 1 (Sgo1), INCENP, and p38 MAP kinase (p38 MAPK), were investigated. Sgo1 is a protector of centromeric cohesion. It is also described in the tension-sensing mechanism of the SAC and in the regulation of kinetochore-microtubule connections. Our results revealed a central role for Sgo1 in a novel branch of kinetochore assembly. INCENP constitutes part of the chromosomal passenger complex (CPC). The other members of the core complex are the Aurora B kinase, Survivin and Borealin. CPC is an important regulatory element of cell division having several roles at various stages of mitosis. Our results indicated that INCENP and Aurora B are highly dynamic proteins at the mitotic centromeres and suggested a new role for CPC in regulation of chromosome movements and spindle structure during late mitosis. The p38 MAPK has been implicated in G1 and G2 checkpoints during the cell cycle. However, its role in mitotic progression and control of SAC signaling has been controversial. In this thesis, we discovered a novel function for p38γ MAPK in chromosome orientation and spindle structure as well as in promotion of viability of mitotic cells.
Resumo:
Selostus: Heraproteiinit terveysvaikutteisten elintarvikkeiden kehittämisessä
Resumo:
Membrane filtration has become increasingly attractive in the processing of both foodand biotechnological products. However, the poor selectivity of the membranes and fouling are the critical factors limiting the development of UF systems for the specific fractionation of protein mixtures. This thesis gives an overview on fractionation of proteins from model protein solutions or from biological solutions. An attempt was made to improve the selectivity of the available membranes by modifying the membranes and by exploiting the different electrostatic interactions between the proteins and the membrane pore surfaces. Fractionation and UF behavior of proteins in the model solutions and in the corresponding biological solutions were compared. Characterization of the membranes and protein adsorptionto the membrane were investigated with combined flux and streaming potential studies. It has been shown that fouling of the membranes can be reduced using "self-rejecting" membranes at pH values where electrostatic repulsion is achieved between the membrane and the proteins in solution. This effect is best shown in UF of dilute single protein solutions at low ionic strengths and low pressures. Fractionation of model proteins in single, binary, and ternary solutionshas been carried out. The results have been compared to the results obtained from fractination of biological solutions. It was generally observed that fractination of proteins from biological solutions are more difficult to carry out owingto the presence of non studied protein components with different properties. Itcan be generally concluded that it is easier to enrich the smaller protein in the permeate but it is also possible to enrich the larger protein in the permeateat pH values close to the isoelectric point of the protein. It should be possible to find an optimal flux and modification to effectively improve the fractination of proteins even with very similar molar masses.
Resumo:
In this thesis different parameters influencing critical flux in protein ultrafiltration and membrane foul-ing were studied. Short reviews of proteins, cross-flow ultrafiltration, flux decline and criticalflux and the basic theory of Partial Least Square analysis (PLS) are given at the beginning. The experiments were mainly performed using dilute solutions of globular proteins, commercial polymeric membranes and laboratory scale apparatuses. Fouling was studied by flux, streaming potential and FTIR-ATR measurements. Critical flux was evaluated by different kinds of stepwise procedures and by both con-stant pressure and constant flux methods. The critical flux was affected by transmembrane pressure, flow velocity, protein concentration, mem-brane hydrophobicity and protein and membrane charges. Generally, the lowest critical fluxes were obtained at the isoelectric points of the protein and the highest in the presence of electrostatic repulsion between the membrane surface and the protein molecules. In the laminar flow regime the critical flux increased with flow velocity, but not any more above this region. An increase in concentration de-creased the critical flux. Hydrophobic membranes showed fouling in all charge conditionsand, furthermore, especially at the beginning of the experiment even at very low transmembrane pressures. Fouling of these membranes was thought to be due to protein adsorption by hydrophobic interactions. The hydrophilic membranes used suffered more from reversible fouling and concentration polarisation than from irreversible foul-ing. They became fouled at higher transmembrane pressures becauseof pore blocking. In this thesis some new aspects on critical flux are presented that are important for ultrafiltration and fractionation of proteins.
Resumo:
Neurofilament proteins (NFs) are the major components of the intermediate filaments of the neuronal cytoskeleton. The three different NF proteins; the low (NF-L), medium (NF-M),and dendrites.NF proteins play an important role in neuronal development, and plasticity,and seem to contribute to the pathophysiology of several diseases. However, the detailed expression patterns of NF proteins in the course of postnatal aturation, and in response to seizures in the rat have remained unknown. In this work, I have studied the developmental expression and cellular distribution of the three NF proteins in the rat hippocampus during the postnatal development. The reactivity of NF proteins in response to kainic acid (KA)-induced status epilepticus (SE)was studied in the hippocampus of 9-day-old rats, and using in vitro organotypic hippocampal slices cultures prepared from P6-7 rats. The results showed that NF-L and NF-M proteins are expressed already at the postnatal day 1, while the expression of NF-H mainly occurred during the second postnatal week. The immunoreactivity of NF proteins varied depending on the cell type and sub-cellular location in the hippocampus. In adult rats, KA-induced SE typically results in severe and permanent NF degradation. However, in our P9 rats KA-induced SE resulted in a transient increase in the expression of NF proteins during the first few hours but not degradation. No neuronal death or mossy fiber sprouting was observed at any time after SE. The in vitro studies with OHCs, which mimick the in vivo developing models where a local injection of KA is applied(e.g. intrahippocampal), indicated that NF proteins were rapidly degraded in response to KA treatment, this effect being effectively inhibited by the treatment with the AMPA receptor antagonist CNQX, and calpain inhibitor MDL-28170. These compounds also significantly ameliorated the KA-induced region-specific neuronal damage. The NMDA receptor antagonist and the L-type Ca2+ channel blocker did not have any significant effect. In conclusion, the results indicate that the developmental expression of NF in the rat hippocampus is differentially regulated and targeted in the different hippocampal cell types during the postnatal development. Furthermore, despite SE, the mechanisms leading to NF degradation and neuronal death are not activated in P9 rats unlike in adults. The reason for this remains unknown. The results in organotypic hippocampal cultures confirm the validity of this in vitro model to study development processes, and to perform pharmacological studies. The results also suggest that calpain proteases as interesting pharmacological targets to reduce neuronal damage after acute excitotoxic insults.
Resumo:
Construction of multiple sequence alignments is a fundamental task in Bioinformatics. Multiple sequence alignments are used as a prerequisite in many Bioinformatics methods, and subsequently the quality of such methods can be critically dependent on the quality of the alignment. However, automatic construction of a multiple sequence alignment for a set of remotely related sequences does not always provide biologically relevant alignments.Therefore, there is a need for an objective approach for evaluating the quality of automatically aligned sequences. The profile hidden Markov model is a powerful approach in comparative genomics. In the profile hidden Markov model, the symbol probabilities are estimated at each conserved alignment position. This can increase the dimension of parameter space and cause an overfitting problem. These two research problems are both related to conservation. We have developed statistical measures for quantifying the conservation of multiple sequence alignments. Two types of methods are considered, those identifying conserved residues in an alignment position, and those calculating positional conservation scores. The positional conservation score was exploited in a statistical prediction model for assessing the quality of multiple sequence alignments. The residue conservation score was used as part of the emission probability estimation method proposed for profile hidden Markov models. The results of the predicted alignment quality score highly correlated with the correct alignment quality scores, indicating that our method is reliable for assessing the quality of any multiple sequence alignment. The comparison of the emission probability estimation method with the maximum likelihood method showed that the number of estimated parameters in the model was dramatically decreased, while the same level of accuracy was maintained. To conclude, we have shown that conservation can be successfully used in the statistical model for alignment quality assessment and in the estimation of emission probabilities in the profile hidden Markov models.
Resumo:
During the past few years, a considerable number of research articles have been published relating to the structure and function of the major photosynthetic protein complexes, photosystem (PS) I, PSII, cytochrome (Cyt) b6f, and adenosine triphosphate (ATP) synthase. Sequencing of the Arabidopsis thaliana (Arabidopsis) genome together with several high-quality proteomics studies has, however, revealed that the thylakoid membrane network of plant chloroplasts still contains a number of functionally unknown proteins. These proteins may have a role as auxiliary proteins guiding the assembly, maintenance, and turnover of the thylakoid protein complexes, or they may be as yet unknown subunits of the photosynthetic complexes. Novel subunits are most likely to be found in the NAD(P)H dehydrogenase (NDH) complex, the structure and function of which have remained obscure in the absence of detailed crystallographic data, thus making this thylakoid protein complex a particularly interesting target of investigation. In this thesis, several novel thylakoid-associated proteins were identified by proteomics-based methods. The major goal of characterization of the stroma thylakoid associated polysome-nascent chain complexes was to determine the proteins that guide the dynamic life cycle of PSII. In addition, a large protein complex of ≥ 1,000 kDa, residing in the stroma thylakoid, was characterized in greater depth and it was found to be a supercomplex composed of the PSI and NDH complexes. A set of newly identified proteins from Arabidopsis thylakoids was subjected to detailed characterization using the reverse genetics approach and extensive biochemical and biophysical analysis. The role of the novel proteins, either as auxiliary proteins or subunits of the photosynthetic protein complexes, was revealed. Two novel thylakoid lumen proteins, TLP18.3 and AtCYP38, function as auxiliary proteins assisting specific steps of the assembly/repair of PSII. The role of the 10-kDa thylakoid lumen protein PsbR is related to the optimization of oxygen evolution of PSII by assisting the assembly of the PsbP protein. Two integral thylakoid membrane proteins, NDH45 and NDH48, are novel subunits of the chloroplast NDH complex. Finally, the thylakoid lumen immunophilin AtCYP20-2 is suggested to interact with the NDH complex, instead of PSII as was hypothesized earlier.
Resumo:
This thesis is an experimental study regarding the identification and discrimination of vowels, studied using synthetic stimuli. The acoustic attributes of synthetic stimuli vary, which raises the question of how different spectral attributes are linked to the behaviour of the subjects. The spectral attributes used are formants and spectral moments (centre of gravity, standard deviation, skewness and kurtosis). Two types of experiments are used, related to the identification and discrimination of the stimuli, respectively. The discrimination is studied by using both the attentive procedures that require a response from the subject, and the preattentive procedures that require no response. Together, the studies offer information about the identification and discrimination of synthetic vowels in 15 different languages. Furthermore, this thesis discusses the role of various spectral attributes in the speech perception processes. The thesis is divided into three studies. The first is based only on attentive methods, whereas the other two concentrate on the relationship between identification and discrimination experiments. The neurophysiological methods (EEG recordings) reveal the role of attention in processing, and are used in discrimination experiments, while the results reveal differences in perceptual processes based on the language, attention and experimental procedure.
Resumo:
Antibodies are natural binding proteins produced in vertebrates as a response to invading pathogens and foreign substances. Because of their capability for tight and specific binding, antibodies have found use as binding reagents in research and diagnostics. Properties of cloned recombinant antibodies can be further improved by means of in vitro evolution, combining mutagenesis with subsequent phage display selection. It is also possible to isolate entirely new antibodies from vast naïve or synthetic antibody libraries by phage display. In this study, library techniques and phage display selection were applied in order to optimise binding scaffolds and antigen recognition of antibodies, and to evolve new and improved bioaffinity reagents. Antibody libraries were generated by random and targeted mutagenesis. Expression and stability were mainly optimised by the random methods whereas targeted randomisation of the binding site residues was used for optimising the binding properties. Trinucleotide mutagenesis allowed design of defined randomisation patterns for a synthetic antibody library. Improved clones were selected by phage display. Capture by a specific anti- DHPS antibody was exploited in the selection of improved phage display of DHPS. Efficient selection for stability was established by combining phage display selection with denaturation under reducing conditions. Broad-specific binding of a generic anti-sulfonamide antibody was improved by selection with one of the weakest binding sulfonamides. In addition, p9 based phage display was studied in affinity selection from the synthetic library. A TIM barrel protein DHPS was engineered for efficient phage display by combining cysteinereplacement with random mutagenesis. The resulting clone allows use of phage display in further engineering of DHPS and possibly use as an alternative-binding scaffold. An anti-TSH scFv fragment, cloned from a monoclonal antibody, was engineered for improved stability to better suite an immunoassay. The improved scFv tolerates 8 – 9 °C higher temperature than the parental scFv and should have sufficient stability to be used in an immunoanalyser with incubation at 36 °C. The anti-TSH scFv fragment was compared with the corresponding Fab fragment and the parental monoclonal antibody as a capturing reagent in a rapid 5-min immunoassay for TSH. The scFv fragment provided some benefits over the conventionally used Mab in anayte-binding capacity and assay kinetics. However, the recombinant Fab fragment, which had similar kinetics to the scFv, provided a more sensitive and reliable assay than the scFv. Another cloned scFv fragment was engineered in order to improve broad-specific recognition of sulfonamides. The improved antibody detects different sulfonamides at concentrations below the maximum residue limit (100 μg/kg in EU and USA) and allows simultaneous screening of different sulfonamide drug residues. Finally, a synthetic antibody library was constructed and new antibodies were generated and affinity matured entirely in vitro. These results illuminate the possibilities of phage display and antibody engineering for generation and optimisation of binding reagents in vitro and indicate the potential of recombinant antibodies as affinity reagents in immunoassays.
Resumo:
The theory part of the Master’s thesis introduces fibres with high tensile strength and elongation used in the production of paper or board. Strong speciality papers are made of bleached softwood long fibre pulp. The aim of the thesis is to find new fibres suitable for paper making to increase either tensile strength, elongation or both properties. The study introduces how fibres bond and what kind of fibres give the strongest bonds into fibre matrix. The fibres that are used the in manufacturing of non-wovens are long and elastic. They are longer than softwood cellulose fibres. The end applications of non-wovens and speciality papers are often the same, for instance, wet napkins or filter media. The study finds out which fibres are used in non-wovens and whether the same fibres could be added to cellulose pulp as armature fibres, what it would require for these fibres to be blended in cellulose, how they would bind with cellulose and whether some binding agents or thermal bonding, such as hot calendaring would be necessary. The following fibres are presented: viscose, polyester, nylon, polyethylene, polypropylene and bicomponent fibres. In the empiric part of the study the most suitable new fibres are selected for making hand sheets in laboratory. Test fibres are blended with long fibre cellulose. The test fibres are viscose (Tencel), polypropylene and polyethylene. Based on the technical values measured in the sheets, the study proposes how to continue trials on paper machine with viscose, polyester, bicomponent and polypropylene fibres.
Resumo:
Metastatic bone lesions are commonly associated with prostate cancer affecting approximately 60-80% of the patients. The progression of prostate cancer into an advanced stage is a complex process and its molecular mechanisms are poorly understood. So far, no curative treatment is available for advanced stages of prostate cancer. Bisphosphonates (BPs) are synthetic pyrophosphate analogues, which are used as therapeutics for various metabolic bone diseases because of their ability to inhibit osteoclastic bone resorption. Nitrogen-containing bisphosphonates block the function of osteoclasts by disturbing the vesicular traffic and the mevalonate pathway -related enzymes, for example farnesyl diphosphate synthase, which is involved in post-translational isoprenylation of small GTPases. In addition, the anti-proliferative, anti-invasive and pro-apoptotic effects of nitrogen-containing bisphosphonates on various cancer cell lines have been reported. The aim of this thesis work was to clarify the effects of bisphosphonates on prostate cancer cells, focusing on the mechanisms of adhesion, invasion and migration. Furthermore, the role of the mevalonate pathway and prenylation reactions in invasion and regulation of the cytoskeleton of prostate cancer cells were examined. Finally, the effects of alendronate on cytoskeleton- and actin-related proteins in prostate cancer cells were studied in vitro and in vivo. The results showed that the nitrogen-containing bisphosphonate alendronate inhibited the adhesion of prostate cancer cells to various extracellular matrix proteins and migration and invasion in vitro. Inhibition of invasion and migration was reversed by mevalonate pathway intermediates. The blockage of the prenylation transferases GGTase I and FTase inhibited the invasion, migration and actin organization of prostate cancer cells. The marked decrease of cofilin was observed by the prenylation inhibitors used. Inhibition of GGTase I also disrupted the regulation of focal adhesion kinase and paxillin. In addition, alendronate disrupted the cytoskeletal organization and decreased the level of cofilin in vitro and in vivo. The decrease of the cofilin level by alendronate could be one of the key mechanisms behind the observed inhibition of migration and invasion. Based on the effects of nitrogen-containing bisphosphonates on tumor cell invasion and cytoskeletal organization, they can be suggested to be developed as therapeutics for inhibiting prostate cancer metastasis.
Resumo:
New luminometric particle-based methods were developed to quantify protein and to count cells. The developed methods rely on the interaction of the sample with nano- or microparticles and different principles of detection. In fluorescence quenching, timeresolved luminescence resonance energy transfer (TR-LRET), and two-photon excitation fluorescence (TPX) methods, the sample prevents the adsorption of labeled protein to the particles. Depending on the system, the addition of the analyte increases or decreases the luminescence. In the dissociation method, the adsorbed protein protects the Eu(III) chelate on the surface of the particles from dissociation at a low pH. The experimental setups are user-friendly and rapid and do not require hazardous test compounds and elevated temperatures. The sensitivity of the quantification of protein (from 40 to 500 pg bovine serum albumin in a sample) was 20-500-fold better than in most sensitive commercial methods. The quenching method exhibited low protein-to-protein variability and the dissociation method insensitivity to the assay contaminants commonly found in biological samples. Less than ten eukaryotic cells were detected and quantified with all the developed methods under optimized assay conditions. Furthermore, two applications, the method for detection of the aggregation of protein and the cell viability test, were developed by utilizing the TR-LRET method. The detection of the aggregation of protein was allowed at a more than 10,000 times lower concentration, 30 μg/L, compared to the known methods of UV240 absorbance and dynamic light scattering. The TR-LRET method was combined with a nucleic acid assay with cell-impermeable dye to measure the percentage of dead cells in a single tube test with cell counts below 1000 cells/tube.
Resumo:
The large biodiversity of cyanobacteria together with the increasing genomics and proteomics metadata provide novel information for finding new commercially valuable metabolites. With the advent of global warming, there is growing interest in the processes that results in efficient CO2 capture through the use of photosynthetic microorganisms such as cyanobacteria. This requires a detailed knowledge of how cyanobacteria respond to the ambient CO2. My study was aimed at understanding the changes in the protein profile of the model organism, Synechocystis PCC 6803 towards the varying CO2 level. In order to achieve this goal I have employed modern proteomics tools such as iTRAQ and DIGE, recombinant DNA techniques to construct different mutants in cyanobacteria and biophysical methods to study the photosynthetic properties. The proteomics study revealed several novel proteins, apart from the well characterized proteins involved in carbon concentrating mechanisms (CCMs), that were upregulated upon shift of the cells from high CO2 concentration (3%) to that in air level (0.039%). The unknown proteins, Slr0006 and flavodiiron proteins (FDPs) Sll0217-Flv4 and Sll0219-Flv2, were selected for further characterization. Although slr0006 was substantially upregulated under Ci limiting conditions, inactivation of the gene did not result in any visual phenotype under various environmental conditions indicating that this protein is not essential for cell survival. However, quantitative proteomics showed the induction of novel plasmid and chromosome encoded proteins in deltaslr0006 under air level CO2 conditions. The expression of the slr0006 gene was found to be strictly dependent on active photosynthetic electron transfer. Slr0006 contains conserved dsRNA binding domain that belongs to the Sua5/YrdC/YciO protein family. Structural modelling of Slr0006 showed an alpha/beta twisted open-sheet structure and a positively charged cavity, indicating a possible binding site for RNA. The 3D model and the co-localization of Slr0006 with ribosomal subunits suggest that it might play a role in translation or ribosome biogenesis. On the other hand, deletions in the sll0217-sll218- sll0219 operon resulted in enhanced photodamage of PSII and distorted energy transfer from phycobilisome (PBS) to PSII, suggesting a dynamic photoprotection role of the operon. Constructed homology models also suggest efficient electron transfer in heterodimeric Flv2/Flv4, apparently involved in PSII photoprotection. Both Slr0006 and FDPs exhibited several common features, including negative regulation by NdhR and ambiguous cellular localization when subjected to different concentrations of divalent ions. This strong association with the membranes remained undisturbed even in the presence of detergent or high salt. My finding brings ample information on three novel proteins and their functions towards carbon limitation. Nevertheless, many pathways and related proteins remain unexplored. The comprehensive understanding of the acclimation processes in cyanobacteria towards varying environmental CO2 levels will help to uncover adaptive mechanisms in other organisms, including higher plants.
Resumo:
Den snart 200 år gamla vetenskapsgrenen organisk synteskemi har starkt bidragit till moderna samhällens välfärd. Ett av flaggskeppen för den organiska synteskemin är utvecklingen och produktionen av nya läkemedel och speciellt de aktiva substanserna däri. Därmed är det viktigt att utveckla nya syntesmetoder, som kan tillämpas vid framställningen av farmaceutiskt relevanta målstrukturer. I detta sammanhang är den ultimata målsättningen dock inte endast en lyckad syntes av målmolekylen, utan det är allt viktigare att utveckla syntesrutter som uppfyller kriterierna för den hållbara utvecklingen. Ett av de centralaste verktygen som en organisk kemist har till förfogande i detta sammanhang är katalys, eller mera specifikt möjligheten att tillämpa olika katalytiska reaktioner vid framställning av komplexa målstrukturer. De motsvarande industriella processerna karakteriseras av hög effektivitet och minimerad avfallsproduktion, vilket naturligtvis gynnar den kemiska industrin samtidigt som de negativa miljöeffekterna minskas avsevärt. I denna doktorsavhandling har nya syntesrutter för produktion av finkemikalier med farmaceutisk relevans utvecklats genom att kombinera förhållandevis enkla transformationer till nya reaktionssekvenser. Alla reaktionssekvenser som diskuteras i denna avhandling påbörjades med en metallförmedlad allylering av utvalda aldehyder eller aldiminer. De erhållna produkterna innehållende en kol-koldubbelbindning med en närliggande hydroxyl- eller aminogrupp modifierades sedan vidare genom att tillämpa välkända katalytiska reaktioner. Alla syntetiserade molekyler som presenteras i denna avhandling karakteriseras som finkemikalier med hög potential vid farmaceutiska tillämpningar. Utöver detta tillämpades en mängd olika katalytiska reaktioner framgångsrikt vid syntes av dessa molekyler, vilket i sin tur förstärker betydelsen för de katalytiska verktygen i organiska kemins verktygslåda.