3 resultados para Aspartic Proteinases
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
The simple single-ion activity coefficient equation originating from the Debye-Hückel theory was used to determine the thermodynamic and stoichiometric dissociation constants of weak acids from data concerning galvanic cells. Electromotive force data from galvanic cells without liquid junctions, which was obtained from literature, was studied in conjuction with the potentiometric titration data relating to aqueous solutions at 298.15 K. The dissociation constants of weak acids could be determined by the presented techniques and almost all the experimental data studied could be interpreted within the range of experimental error. Potentiometric titration has been used here and the calculation methods were developed to obtain the thermodynamic and stoichiometric dissociation constants of some weak acids in aqueous solutions at 298.15 K. The ionic strength of titrated solutions were adjusted using an inert electrolyte, namely, sodium or potassium chloride. Salt content alonedetermines the ionic strength. The ionic strength of the solutions studied varied from 0.059 mol kg-1 to 0.37 mol kg-1, and in some cases up to 1.0 mol kg-1. The following substances were investigated using potentiometric titration: aceticacid, propionic acid, L-aspartic acid, L-glutamic acid and bis(2,2-dimethyl-3-oxopropanol) amine.
Resumo:
The paper industry is constantly looking for new ideas for improving paper products while competition and raw material prices are increasing. Many paper products are pigment coated. Coating layer is the top layer of paper, thus by modifying coating pigment also the paper itself can be altered and value added to the final product. In this thesis, synthesis of new plastic and hybrid pigments and their performance in paper and paperboard coating is reported. Two types of plastic pigments were studied: core-shell latexes and solid beads of maleimide copolymers. Core-shell latexes with partially crosslinked hydrophilic polymer core of poly(n-butyl acrylate-co-methacrylic acid) and a hard hydrophobic polystyrene shell were prepared to improve the optical properties of coated paper. In addition, the effect of different crosslinkers was analyzed and the best overall performance was achieved by the use of ethylene glycol dimethacrylate (EGDMA). Furthermore, the possibility to modify core-shell latex was investigated by introducing a new polymerizable optical brightening agent, 1-[(4-vinylphenoxy)methyl]-4-(2-henylethylenyl)benzene which gave promising results. The prepared core-shell latex pigments performed smoothly also in pilot coating and printing trials. The results demonstrated that by optimizing polymer composition, the optical and surface properties of coated paper can be significantly enhanced. The optimal reaction conditions were established for thermal imidization of poly(styrene-co-maleimide) (SMI) and poly(octadecene-co-maleimide) (OMI) from respective maleic anhydride copolymer precursors and ammonia in a solvent free process. The obtained aqueous dispersions of nanoparticle copolymers exhibited glass transition temperatures (Tg) between 140-170ºC and particle sizes from 50-230 nm. Furthermore, the maleimide copolymers were evaluated in paperboard coating as additional pigments. The maleimide copolymer nanoparticles were partly imbedded into the porous coating structure and therefore the full potential of optical property enhancement for paperboard was not achieved by this method. The possibility to modify maleimide copolymers was also studied. Modifications were carried out via N-substitution by replacing part of the ammonia in the imidization reaction with amines, such as triacetonediamine (TAD), aspartic acid (ASP) and fluorinated amines (2,2,2- trifluoroethylamine, TFEA and 2,2,3,3,4,4,4-heptafluorobuthylamine, HFBA). The obtained functional nanoparticles varied in size between 50-217 nm and their Tg from 150-180ºC. During the coating process the produced plastic pigments exhibited good runnability. No significant improvements were achieved in light stability with TAD modified copolymers whereas nanoparticles modified with aspartic acid and those containing fluorinated groups showed the desired changes in surface properties of the coated paperboard. Finally, reports on preliminary studies with organic-inorganic hybrids are presented. The hybrids prepared by an in situ polymerization reaction consisted of 30 wt% poly(styrene- co-maleimide) (SMI) and high levels of 70 wt% inorganic components of kaolin and/or alumina trihydrate. Scanning Electron Microscopy (SEM) images and characterization by Fourier Transform Infrared Spcetroscopy (FTIR) and X-Ray Diffraction (XRD) revealed that the hybrids had conventional composite structure and inorganic components were covered with precipitated SMI nanoparticles attached to the surface via hydrogen bonding. In paper coating, the hybrids had a beneficial effect on increasing gloss levels.
Resumo:
The mechanisms leading to an enhanced susceptibility to gingivitis in pregnant women have not yet been completely described. Therefore, the current study series were performed to investigate longitudinally the influence of pregnancy on periodontal tissues, and to evaluate microbial and host response factors related to pregnancy gingivitis formation. Pregnancy-related periodontal changes were analysed in 30 generally healthy women (24- 35 years old) once per trimester, till the end of lactation. Matched non-pregnant women (n=24) served as the controls, and were examined three times, once per following month. Pregnancy-related gingival inflammation was observed as enhanced tendency towards gingival bleeding and pseudopocket formation with a concomitant decrease in plaque levels. Gingivitis reached its peak during mid-pregnancy and then decreased transiently visit by visit. After lactation, no differences in periodontal status were seen between the study and control populations. In contrast to previous studies reporting increased levels of Prevotella intermedia, a specific aim was to analyse phenotypically two identical species, P. intermedia and Prevotella nigrescens, separately using a 16S ribosomal DNA-based PCR. As a result, the increased levels of P. nigrescens were related to pregnancy gingivitis. Matrix metalloproteinases (MMPs) are involved in periodontal destruction. However, their role in pregnancy gingivitis is not well studied. Therefore, neutrophilic enzymes and proteinases, such as MMP and myeloperoxidase (MPO) levels were analysed from saliva and gingival crevicular fluid (GCF) samples during the follow-up. Despite increased inflammation and microbial shift towards anaerobes, the host response did not activate the MMP, elastase and MPO secretion during pregnancy. These results demonstrate that during pregnancy gingival inflammation is enhanced especially during the second trimester, when P. nigrescens levels in subgingival plaque were increased, whereas the neutrophilic enzymes and proteinase levels in both saliva and GCF remained low. These findings could explain, at least in part, why pregnancy gingivitis itself does not predispose or proceed to periodontitis.