13 resultados para Array signal processing
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
The need for high performance, high precision, and energy saving in rotating machinery demands an alternative solution to traditional bearings. Because of the contactless operation principle, the rotating machines employing active magnetic bearings (AMBs) provide many advantages over the traditional ones. The advantages such as contamination-free operation, low maintenance costs, high rotational speeds, low parasitic losses, programmable stiffness and damping, and vibration insulation come at expense of high cost, and complex technical solution. All these properties make the use of AMBs appropriate primarily for specific and highly demanding applications. High performance and high precision control requires model-based control methods and accurate models of the flexible rotor. In turn, complex models lead to high-order controllers and feature considerable computational burden. Fortunately, in the last few years the advancements in signal processing devices provide new perspective on the real-time control of AMBs. The design and the real-time digital implementation of the high-order LQ controllers, which focus on fast execution times, are the subjects of this work. In particular, the control design and implementation in the field programmable gate array (FPGA) circuits are investigated. The optimal design is guided by the physical constraints of the system for selecting the optimal weighting matrices. The plant model is complemented by augmenting appropriate disturbance models. The compensation of the force-field nonlinearities is proposed for decreasing the uncertainty of the actuator. A disturbance-observer-based unbalance compensation for canceling the magnetic force vibrations or vibrations in the measured positions is presented. The theoretical studies are verified by the practical experiments utilizing a custom-built laboratory test rig. The test rig uses a prototyping control platform developed in the scope of this work. To sum up, the work makes a step in the direction of an embedded single-chip FPGA-based controller of AMBs.
Resumo:
Meluntorjuntaan on perinteisesti käytetty passiivisia menetelmiä. Monissa sovelluksissa melua voidaan vaimentaa myös aktiivisella meluntorjunnalla. Tässä työssä tutkitaan aktiivisen meluntorjunnan signaalinkäsittelyä sekä signaalinkäsittelyyn soveltuvia laitteistoja. Lisäksi selvitetään ANC-järjestelmien (Active Noise Control) toimintaanja signaalinkäsittelyyn vaikuttavia tekijöitä. Tutkinnassa rajoitutaan yksikanavaisiin järjestelmiin. Esimerkkisovelluksena käytetään ulkotilan melunvaimennukseen soveltuvaa järjestelmää. Esimerkkijärjestelmään suunniteltiin signaalinkäsittelylaitteisto, jonka soveltuvuutta järjestelmän signaalinkäsittelyyn selvitettiin suorituskykymittauksin ja kokeellisin mittauksin.Lisäksi pohditaan signaalinkäsittelyn toteuttamista tutkittavassa järjestelmässä ja sovelluskohteessa.
Resumo:
Problems of the designing active magnet bearingcontrol are developed. The estimation controller are designed and applied to a rigid rotor. The mathematical model of the active magnet bearing controller is developed. This mathematical model is realized on a DSP. The results of this realization are analyzed. The conclusions about the digital signal processing are made.
Resumo:
Diplomityössä esitellään menetelmiä sauvarikon toteamiseksi. Työn tarkoituksena on tutkia roottorivaurioita staattorivirran avulla. Työ jaetaan karkeasti kolmeen osa-alueeseen: oikosulkumoottorin vikoihin, roottorivaurioiden tunnistamiseen ja signaalinkäsittelymenetelmiin, jonka avulla havaitaan sauvarikko. Oikosulkumoottorin vikoja ovat staattorikäämien vauriot ja roottorivauriot. Roottorikäämien vaurioita ovat roottori sauvojen murtuminen sekä roottorisauvan irtoaminen oikosulkujenkaan päästä. Roottorivaurioiden tunnistamismenetelmiä ovat parametrin arviointi ja virtaspektrianalyysi. Työn alkuosassa esitellään oikosulkumoottorien rakenne ja toiminta. Esitellään moottoriin kohdistuvia vikoja ja etsitään ratkaisumenetelmiä roottorivaurioiden tunnistamisessa. Lopuksi tutkitaan, kuinka staattorimittaustietojen perusteella saadut tulokset voidaan käsitellä FFT -algoritmilla ja kuinka FFT -algoritmi voidaan toteuttaa sulautettuna Sharc -prosessorin avulla. Työssä käytetään ADSP 21062 EZ -LAB kehitysympäristöä, jonka avulla voidaan ajaa ohjelmia RAM-sirusta, joka on vuorovaikutuksessa SHARC -laudassa oleviin laitteisiin.
Resumo:
Virtalähdejärjestelmä koostuu itsenäisesti toimivista virtalähdeyksiköistä. Virtalähdeyksiköt ovat rinnankytketty syöttämään virtaa kuormaan. Tämä diplomityö käsittelee virtalähdeyksiköiden ohjaamiseen liittyviä ongelmia ja ratkaisuja. Työssä suunnitellaan virtalähdejärjestelmän ohjauselektroniikkaa sekä mikrokontrollerin ohjelmakoodia. Lisäksi kehitetään ratkaisuja virtalähteen hallintaan ja automaattiseen ohjaukseen. Huomiota kiinnitetään vikasietoisuuteen ja käyttäjäystävällisyyteen.
Resumo:
Coherent anti-Stokes Raman scattering (CARS) microscopy is rapidly developing into a unique microscopic tool in biophysics, biology and the material sciences. The nonlinear nature of CARS spectroscopy complicates the analysis of the received spectra. There were developed mathematical methods for signal processing and for calculations spectra. Fourier self-deconvolution is a special high pass FFT filter which synthetically narrows the effective trace bandwidth features. As Fourier self-deconvolution can effectively reduce the noise, which may be at a higher spatial frequency than the peaks, without losing peak resolution. The idea of the work is to experiment the possibility of using wavelet decomposition in spectroscopic for background and noise removal, and Fourier transformation for linenarrowing.
Resumo:
Tässä työssä esitellään kaksi D-luokan audiovahvistimissa käytettyä modulointimenetelmää ja vertaillaan niiden välisiä ominaisuuksia. Esitellyt menetelmät ovat pulssinleveysmodulaatio sekä sigma-deltamodulaatio. Lisäksi työssä esitellään signaalin käsittelyssä muodostuvan kohinan ja särön syntyä ja menetelmiä niiden välttämiseksi. Menetelmien ominaisuuksien vertailuun muodostetaan simulointimallit Simulink-ohjelmalla. Simulointitulosten perusteella valitaan käytettävä modulointimenetelmä audiovahvistinsovellukseen huomioon ottaen asetetut vaatimukset ja tavoitteet. Lopuksi valitun modulointimenetelmän suunnittelun pääkohtiin kiinnitetään huomiota.
Resumo:
Tämän työn tavoitteena oli selvittää ja toteuttaa esikäsittelypiirin prototyyppi akustisen emission anturin signaalille. Toteutettu esikäsittelypiiri toimii yksipuoleisella käyttöjännitteellä. Työssä käydään läpi esikäsittelypiirin suunnitteluun liittyvät vaiheet laskelmien ja simulaatioiden muodossa. Lisäksi työssä esitetään mittaustulokset esikäsittelypiirin toiminnasta.
Resumo:
Chaotic behaviour is one of the hardest problems that can happen in nonlinear dynamical systems with severe nonlinearities. It makes the system's responses unpredictable. It makes the system's responses to behave similar to noise. In some applications it should be avoided. One of the approaches to detect the chaotic behaviour is nding the Lyapunov exponent through examining the dynamical equation of the system. It needs a model of the system. The goal of this study is the diagnosis of chaotic behaviour by just exploring the data (signal) without using any dynamical model of the system. In this work two methods are tested on the time series data collected from AMB (Active Magnetic Bearing) system sensors. The rst method is used to nd the largest Lyapunov exponent by Rosenstein method. The second method is a 0-1 test for identifying chaotic behaviour. These two methods are used to detect if the data is chaotic. By using Rosenstein method it is needed to nd the minimum embedding dimension. To nd the minimum embedding dimension Cao method is used. Cao method does not give just the minimum embedding dimension, it also gives the order of the nonlinear dynamical equation of the system and also it shows how the system's signals are corrupted with noise. At the end of this research a test called runs test is introduced to show that the data is not excessively noisy.
Resumo:
Fan systems are responsible for approximately 10% of the electricity consumption in industrial and municipal sectors, and it has been found that there is energy-saving potential in these systems. To this end, variable speed drives (VSDs) are used to enhance the efficiency of fan systems. Usually, fan system operation is optimized based on measurements of the system, but there are seldom readily installed meters in the system that can be used for the purpose. Thus, sensorless methods are needed for the optimization of fan system operation. In this thesis, methods for the fan operating point estimation with a variable speed drive are studied and discussed. These methods can be used for the energy efficient control of the fan system without additional measurements. The operation of these methods is validated by laboratory measurements and data from an industrial fan system. In addition to their energy consumption, condition monitoring of fan systems is a key issue as fans are an integral part of various production processes. Fan system condition monitoring is usually carried out with vibration measurements, which again increase the system complexity. However, variable speed drives can already be used for pumping system condition monitoring. Therefore, it would add to the usability of a variablespeed- driven fan system if the variable speed drive could be used as a condition monitoring device. In this thesis, sensorless detection methods for three lifetime-reducing phenomena are suggested: these are detection of the fan contamination build-up, the correct rotational direction, and the fan surge. The methods use the variable speed drive monitoring and control options for the detection along with simple signal processing methods, such as power spectrum density estimates. The methods have been validated by laboratory measurements. The key finding of this doctoral thesis is that a variable speed drive can be used on its own as a monitoring and control device for the fan system energy efficiency, and it can also be used in the detection of certain lifetime-reducing phenomena.
Resumo:
A linear prediction procedure is one of the approved numerical methods of signal processing. In the field of optical spectroscopy it is used mainly for extrapolation known parts of an optical signal in order to obtain a longer one or deduce missing signal samples. The first is needed particularly when narrowing spectral lines for the purpose of spectral information extraction. In the present paper the coherent anti-Stokes Raman scattering (CARS) spectra were under investigation. The spectra were significantly distorted by the presence of nonlinear nonresonant background. In addition, line shapes were far from Gaussian/Lorentz profiles. To overcome these disadvantages the maximum entropy method (MEM) for phase spectrum retrieval was used. The obtained broad MEM spectra were further underwent the linear prediction analysis in order to be narrowed.
Resumo:
With the shift towards many-core computer architectures, dataflow programming has been proposed as one potential solution for producing software that scales to a varying number of processor cores. Programming for parallel architectures is considered difficult as the current popular programming languages are inherently sequential and introducing parallelism is typically up to the programmer. Dataflow, however, is inherently parallel, describing an application as a directed graph, where nodes represent calculations and edges represent a data dependency in form of a queue. These queues are the only allowed communication between the nodes, making the dependencies between the nodes explicit and thereby also the parallelism. Once a node have the su cient inputs available, the node can, independently of any other node, perform calculations, consume inputs, and produce outputs. Data ow models have existed for several decades and have become popular for describing signal processing applications as the graph representation is a very natural representation within this eld. Digital lters are typically described with boxes and arrows also in textbooks. Data ow is also becoming more interesting in other domains, and in principle, any application working on an information stream ts the dataflow paradigm. Such applications are, among others, network protocols, cryptography, and multimedia applications. As an example, the MPEG group standardized a dataflow language called RVC-CAL to be use within reconfigurable video coding. Describing a video coder as a data ow network instead of with conventional programming languages, makes the coder more readable as it describes how the video dataflows through the different coding tools. While dataflow provides an intuitive representation for many applications, it also introduces some new problems that need to be solved in order for data ow to be more widely used. The explicit parallelism of a dataflow program is descriptive and enables an improved utilization of available processing units, however, the independent nodes also implies that some kind of scheduling is required. The need for efficient scheduling becomes even more evident when the number of nodes is larger than the number of processing units and several nodes are running concurrently on one processor core. There exist several data ow models of computation, with different trade-offs between expressiveness and analyzability. These vary from rather restricted but statically schedulable, with minimal scheduling overhead, to dynamic where each ring requires a ring rule to evaluated. The model used in this work, namely RVC-CAL, is a very expressive language, and in the general case it requires dynamic scheduling, however, the strong encapsulation of dataflow nodes enables analysis and the scheduling overhead can be reduced by using quasi-static, or piecewise static, scheduling techniques. The scheduling problem is concerned with nding the few scheduling decisions that must be run-time, while most decisions are pre-calculated. The result is then an, as small as possible, set of static schedules that are dynamically scheduled. To identify these dynamic decisions and to find the concrete schedules, this thesis shows how quasi-static scheduling can be represented as a model checking problem. This involves identifying the relevant information to generate a minimal but complete model to be used for model checking. The model must describe everything that may affect scheduling of the application while omitting everything else in order to avoid state space explosion. This kind of simplification is necessary to make the state space analysis feasible. For the model checker to nd the actual schedules, a set of scheduling strategies are de ned which are able to produce quasi-static schedulers for a wide range of applications. The results of this work show that actor composition with quasi-static scheduling can be used to transform data ow programs to t many different computer architecture with different type and number of cores. This in turn, enables dataflow to provide a more platform independent representation as one application can be fitted to a specific processor architecture without changing the actual program representation. Instead, the program representation is in the context of design space exploration optimized by the development tools to fit the target platform. This work focuses on representing the dataflow scheduling problem as a model checking problem and is implemented as part of a compiler infrastructure. The thesis also presents experimental results as evidence of the usefulness of the approach.
Resumo:
This thesis is concerned with the state and parameter estimation in state space models. The estimation of states and parameters is an important task when mathematical modeling is applied to many different application areas such as the global positioning systems, target tracking, navigation, brain imaging, spread of infectious diseases, biological processes, telecommunications, audio signal processing, stochastic optimal control, machine learning, and physical systems. In Bayesian settings, the estimation of states or parameters amounts to computation of the posterior probability density function. Except for a very restricted number of models, it is impossible to compute this density function in a closed form. Hence, we need approximation methods. A state estimation problem involves estimating the states (latent variables) that are not directly observed in the output of the system. In this thesis, we use the Kalman filter, extended Kalman filter, Gauss–Hermite filters, and particle filters to estimate the states based on available measurements. Among these filters, particle filters are numerical methods for approximating the filtering distributions of non-linear non-Gaussian state space models via Monte Carlo. The performance of a particle filter heavily depends on the chosen importance distribution. For instance, inappropriate choice of the importance distribution can lead to the failure of convergence of the particle filter algorithm. In this thesis, we analyze the theoretical Lᵖ particle filter convergence with general importance distributions, where p ≥2 is an integer. A parameter estimation problem is considered with inferring the model parameters from measurements. For high-dimensional complex models, estimation of parameters can be done by Markov chain Monte Carlo (MCMC) methods. In its operation, the MCMC method requires the unnormalized posterior distribution of the parameters and a proposal distribution. In this thesis, we show how the posterior density function of the parameters of a state space model can be computed by filtering based methods, where the states are integrated out. This type of computation is then applied to estimate parameters of stochastic differential equations. Furthermore, we compute the partial derivatives of the log-posterior density function and use the hybrid Monte Carlo and scaled conjugate gradient methods to infer the parameters of stochastic differential equations. The computational efficiency of MCMC methods is highly depend on the chosen proposal distribution. A commonly used proposal distribution is Gaussian. In this kind of proposal, the covariance matrix must be well tuned. To tune it, adaptive MCMC methods can be used. In this thesis, we propose a new way of updating the covariance matrix using the variational Bayesian adaptive Kalman filter algorithm.