6 resultados para Architecture - Tropical conditions

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Työn tarkoituksena oli testata jo tutkimuskeskuksella käytössä ollutta ja tutkimuskeskukselle tässä työssä kehitettyä pakkauksen vesihöyrytiiveyteen liittyvää mittausmenetelmää. Saatuja tuloksia verrattiin keskenään sekä materiaalista mitattuihin arvoihin. Elintarvikepakkauksia tutkittiin myös kosteussensoreiden, säilyvyyskokeen sekä kuljetussimuloinnin avulla. Optimoinnilla tutkittiin pakkauksen muodon vaikutusta vesihöyrytiiveyteen. Pakkauksen vesihöyrynläpäisyn mittaamiseen kehitetty menetelmä toimi hyvin ja sen toistettavuus oli hyvä. Verrattaessa sitä jo olemassa olleeseen menetelmään tulokseksi saatiin, että uusi menetelmä oli nopeampi ja vaati vähemmän työaikaa, mutta molemmat menetelmät antoivat hyviä arvoja rinnakkaisille näytteille. Kosteussensoreilla voitiin tutkia tyhjän pakkauksen sisällä olevan kosteuden muutoksia säilytyksen aikana. Säilyvyystesti tehtiin muroilla ja parhaan vesihöyrysuojan antoivat pakkaukset joissa oli alumiinilaminaatti- tai metalloitu OPP kerros. Kuljetustestauksen ensimmäisessä testissä pakkauksiin pakattiin muroja ja toisessa testissä nuudeleita. Kuljetussimuloinnilla ei ollutvaikutusta pakkausten sisäpintojen eheyteen eikä siten pakkausten vesihöyrytiiveyteen. Optimoinnilla vertailtiin eri muotoisten pakkausten tilavuus/pinta-ala suhdetta ja vesihöyrytiiveyden riippuvuutta pinta-alasta. Optimaalisimmaksi pakkaukseksi saatiin pallo, jonka pinta-ala oli pienin ja materiaalin sallima vesihöyrynläpäisy suurin ja vesihöyrybarrierin määrä pienin.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One of the primary goals for food packages is to protect food against harmful environment, especially oxygen and moisture. The gas transmission rate is the total gas transport through the package, both by permeation through the package material and by leakage through pinholes and cracks. The shelf life of a product can be extended, if the food is stored in a gas tight package. Thus there is a need to test gas tightness of packages. There are several tightness testing methods, and they can be broadly divided into destructive and nondestructive methods. One of the most sensitive methods to detect leaks is by using a non destructive tracer gas technique. Carbon dioxide, helium and hydrogen are the most commonly used tracer gases. Hydrogen is the lightest and the smallest of all gases, which allows it to escape rapidly from the leak areas. The low background concentration of H2 in air (0.5 ppm) enables sensitive leak detection. With a hydrogen leak detector it is also possible to locate leaks. That is not possible with many other tightness testing methods. The experimental work has been focused on investigating the factors which affect the measurement results with the H2leak detector. Also reasons for false results were searched to avoid them in upcoming measurements. From the results of these experiments, the appropriate measurement practice was created in order to have correct and repeatable results. The most important thing for good measurement results is to keep the probe of the detector tightly against the leak. Because of its high diffusion rate, the HZ concentration decreases quickly if holding the probe further away from the leak area and thus the measured H2 leaks would be incorrect and small leaks could be undetected. In the experimental part hydrogen, oxygen and water vapour transmissions through laser beam reference holes (diameters 1 100 μm) were also measured and compared. With the H2 leak detector it was possible to detect even a leakage through 1 μm (diameter) within a few seconds. Water vapour did not penetrate even the largest reference hole (100 μm), even at tropical conditions (38 °C, 90 % RH), whereas some O2 transmission occurred through the reference holes larger than 5 μm. Thus water vapour transmission does not have a significant effect on food deterioration, if the diameter of the leak is less than 100 μm, but small leaks (5 100 μm) are more harmful for the food products, which are sensitive to oxidation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work focuses on the study of the determination on the possibilities of controlling the required moisture within the inside of film sealed packages. The task is based on the challenges faced by fresh food producers in actualizing a longer product shelf-life coupled with the growing complex desires coming from consumers in the aspect of quality. One way to realize this is by proper evaluation on the use of the flexible plastic films through permeation measurements on the required amount of moisture penetrating through the plastic film with the application of microperforation. A packaging material requires proper interaction on moisture transmission, between the product and the outside environment. The plastic film material that stands between, fresh fruits, vegetables and the outside environment could have appropriate respiration rates through possible micro holes. This work simulates similar process with the aid of water vapor transmission rate (WVTR) experiment using anhydrous CaCl2 as the desiccant, in studying the WVTR values of various perforated film materials at different conditions of storage (standard, fridge, and tropical conditions). However, the results showed absorption rates of water vapor at various conditions in grams of H2O/m2/24h.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Selostus: Korkeudeltaan eri tyyppisten kauralinjojen kasvu ja sadontuotto pohjoisissa viljelyoloissa

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most of the applications of airborne laser scanner data to forestry require that the point cloud be normalized, i.e., each point represents height from the ground instead of elevation. To normalize the point cloud, a digital terrain model (DTM), which is derived from the ground returns in the point cloud, is employed. Unfortunately, extracting accurate DTMs from airborne laser scanner data is a challenging task, especially in tropical forests where the canopy is normally very thick (partially closed), leading to a situation in which only a limited number of laser pulses reach the ground. Therefore, robust algorithms for extracting accurate DTMs in low-ground-point-densitysituations are needed in order to realize the full potential of airborne laser scanner data to forestry. The objective of this thesis is to develop algorithms for processing airborne laser scanner data in order to: (1) extract DTMs in demanding forest conditions (complex terrain and low number of ground points) for applications in forestry; (2) estimate canopy base height (CBH) for forest fire behavior modeling; and (3) assess the robustness of LiDAR-based high-resolution biomass estimation models against different field plot designs. Here, the aim is to find out if field plot data gathered by professional foresters can be combined with field plot data gathered by professionally trained community foresters and used in LiDAR-based high-resolution biomass estimation modeling without affecting prediction performance. The question of interest in this case is whether or not the local forest communities can achieve the level technical proficiency required for accurate forest monitoring. The algorithms for extracting DTMs from LiDAR point clouds presented in this thesis address the challenges of extracting DTMs in low-ground-point situations and in complex terrain while the algorithm for CBH estimation addresses the challenge of variations in the distribution of points in the LiDAR point cloud caused by things like variations in tree species and season of data acquisition. These algorithms are adaptive (with respect to point cloud characteristics) and exhibit a high degree of tolerance to variations in the density and distribution of points in the LiDAR point cloud. Results of comparison with existing DTM extraction algorithms showed that DTM extraction algorithms proposed in this thesis performed better with respect to accuracy of estimating tree heights from airborne laser scanner data. On the other hand, the proposed DTM extraction algorithms, being mostly based on trend surface interpolation, can not retain small artifacts in the terrain (e.g., bumps, small hills and depressions). Therefore, the DTMs generated by these algorithms are only suitable for forestry applications where the primary objective is to estimate tree heights from normalized airborne laser scanner data. On the other hand, the algorithm for estimating CBH proposed in this thesis is based on the idea of moving voxel in which gaps (openings in the canopy) which act as fuel breaks are located and their height is estimated. Test results showed a slight improvement in CBH estimation accuracy over existing CBH estimation methods which are based on height percentiles in the airborne laser scanner data. However, being based on the idea of moving voxel, this algorithm has one main advantage over existing CBH estimation methods in the context of forest fire modeling: it has great potential in providing information about vertical fuel continuity. This information can be used to create vertical fuel continuity maps which can provide more realistic information on the risk of crown fires compared to CBH.