11 resultados para Antioxidant Enzymes

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acute lung injury (ALI) is a syndrome of acute hypoxemic respiratory failure with bilateral pulmonary infiltrates that is not caused by left atrial hypertension. Since there is no effective treatment available, this frequent clinical syndrome significantly contributes to mortality of both medical and surgical patients. Great majority of the patients with the syndrome suffers from indirect ALI caused by systemic inflammatory response syndrome (SIRS). Sepsis, trauma, major surgery and severe burns, which represent the most common triggers of SIRS, often induce an overwhelming inflammatory reaction leading to dysfunction of several vital organs. Studies of indirect ALI due to SIRS revealed that respiratory dysfunction results from increased permeability of endothelium. Disruption of endothelial barrier allows extravasation of protein-rich liquid and neutrophils to pulmonary parenchyma. Both under normal conditions and in inflammation, endothelial barrier function is regulated by numerous mechanisms. Endothelial enzymes represent one of the critical control points of vascular permeability and leukocyte trafficking. Some endothelial enzymes prevent disruption of endothelial barrier by production of anti-inflammatory substances. For instance, nitric oxide synthase (NOS) down-regulates leukocyte extravasation in inflammation by generation of nitric oxide. CD73 decreases vascular leakage and neutrophil emigration to inflamed tissues by generation of adenosine. On the other hand, vascular adhesion protein-1 (VAP-1) mediates leukocyte trafficking to the sites of inflammation both by generation of pro-inflammatory substances and by physically acting as an adhesion molecule. The aims of this study were to define the role of endothelial enzymes NOS, CD73 and VAP-1 in acute lung injury. Our data suggest that increasing substrate availability for NOS reduces both lung edema and neutrophil infiltration and this effect is not enhanced by concomitant administration of antioxidants. CD73 protects from vascular leakage in ALI and its up-regulation by interferon-β represents a novel therapeutic strategy for treatment of this syndrome. Enzymatic activity of VAP-1 mediates neutrophil infiltration in ALI and its inhibition represents an attractive approach to treat ALI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Members of the bacterial genus Streptomyces are well known for their ability to produce an exceptionally wide selection of diverse secondary metabolites. These include natural bioactive chemical compounds which have potential applications in medicine, agriculture and other fields of commerce. The outstanding biosynthetic capacity derives from the characteristic genetic flexibility of Streptomyces secondary metabolism pathways: i) Clustering of the biosynthetic genes in chromosome regions redundant for vital primary functions, and ii) the presence of numerous genetic elements within these regions which facilitate DNA rearrangement and transfer between non-progeny species. Decades of intensive genetic research on the organization and function of the biosynthetic routes has led to a variety of molecular biology applications, which can be used to expand the diversity of compounds synthesized. These include techniques which, for example, allow modification and artificial construction of novel pathways, and enable gene-level detection of silent secondary metabolite clusters. Over the years the research has expanded to cover molecular-level analysis of the enzymes responsible for the individual catalytic reactions. In vitro studies of the enzymes provide a detailed insight into their catalytic functions, mechanisms, substrate specificities, interactions and stereochemical determinants. These are factors that are essential for the thorough understanding and rational design of novel biosynthetic routes. The current study is a part of a more extensive research project (Antibiotic Biosynthetic Enzymes; www.sci.utu.fi/projects/biokemia/abe), which focuses on the post-PKS tailoring enzymes involved in various type II aromatic polyketide biosynthetic pathways in Streptomyces bacteria. The initiative here was to investigate specific catalytic steps in anthracycline and angucycline biosynthesis through in vitro biochemical enzyme characterization and structural enzymology. The objectives were to elucidate detailed mechanisms and enzyme-level interactions which cannot be resolved by in vivo genetic studies alone. The first part of the experimental work concerns the homologous polyketide cyclases SnoaL and AknH. These catalyze the closure of the last carbon ring of the tetracyclic carbon frame common to all anthracycline-type compounds. The second part of the study primarily deals with tailoring enzymes PgaE (and its homolog CabE) and PgaM, which are responsible for a cascade of sequential modification reactions in angucycline biosynthesis. The results complemented earlier in vivo findings and confirmed the enzyme functions in vitro. Importantly, we were able to identify the amino acid -level determinants that influence AknH and SnoaL stereoselectivity and to determine the complex biosynthetic steps of the angucycline oxygenation cascade of PgaE and PgaM. In addition, the findings revealed interesting cases of enzyme-level adaptation, as some of the catalytic mechanisms did not coincide with those described for characterised homologs or enzymes of known function. Specifically, SnoaL and AknH were shown to employ a novel acid-base mechanism for aldol condenzation, whereas the hydroxylation reaction catalysed by PgaM involved unexpected oxygen chemistry. Owing to a gene-level fusion of two ancestral reading frames, PgaM was also shown to adopt an unusual quaternary sturucture, a non-covalent fusion complex of two alternative forms of the protein. Furthermore, the work highlighted some common themes encountered in polyketide biosynthetic pathways such as enzyme substrate specificity and intermediate reactivity. These are discussed in the final chapters of the work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural studies of proteins aim at elucidating the atomic details of molecular interactions in biological processes of living organisms. These studies are particularly important in understanding structure, function and evolution of proteins and in defining their roles in complex biological settings. Furthermore, structural studies can be used for the development of novel properties in biomolecules of environmental, industrial and medical importance. X-ray crystallography is an invaluable tool to obtain accurate and precise information about the structure of proteins at the atomic level. Glutathione transferases (GSTs) are amongst the most versatile enzymes in nature. They are able to catalyze a wide variety of conjugation reactions between glutathione (GSH) and non-polar components containing an electrophilic carbon, nitrogen or sulphur atom. Plant GSTs from the Tau class (a poorly characterized class) play an important role in the detoxification of xenobiotics and stress tolerance. Structural studies were performed on a Tau class fluorodifen-inducible glutathione transferase from Glycine max (GmGSTU4-4) complexed with GSH (2.7 Å) and a product analogue Nb-GSH (1.7 Å). The three-dimensional structure of the GmGSTU4-4-GSH complex revealed that GSH binds in different conformations in the two subunits of the dimer: in an ionized form in one subunit and a non-ionized form in the second subunit. Only the ionized form of the substrate may lead to the formation of a catalytically competent complex. Structural comparison between the GSH and Nb-GSH bound complexes revealed significant differences with respect to the hydrogen-bonding, electrostatic interaction pattern, the upper part of -helix H4 and the C-terminus of the enzyme. These differences indicate an intrasubunit modulation between the G-and Hsites suggesting an induced-fit mechanism of xenobiotic substrate binding. A novel binding site on the surface of the enzyme was also revealed. Bacterial type-II L-asparaginases are used in the treatment of haematopoietic diseases such as acute lymphoblastic leukaemia (ALL) and lymphomas due to their ability to catalyze the conversion of L-asparagine to L-aspartate and ammonia. Escherichia coli and Erwinia chrysanthemi asparaginases are employed for the treatment of ALL for over 30 years. However, serious side-effects affecting the liver and pancreas have been observed due to the intrinsic glutaminase activity of the administered enzymes. Structural studies on Helicobacter pylori L-asparaginase (HpA) were carried out in an effort to discover novel L-asparaginases with potential chemotherapeutic utility in ALL treatment. Detailed analysis of the active site geometry revealed structurally significant differences between HpA and other Lasparaginases that may be important for the biological activities of the enzyme and could be further exploited in protein engineering efforts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photosynthesis, the process in which carbon dioxide is converted into sugars using the energy of sunlight, is vital for heterotrophic life on Earth. In plants, photosynthesis takes place in specific organelles called chloroplasts. During chloroplast biogenesis, light is a prerequisite for the development of functional photosynthetic structures. In addition to photosynthesis, a number of other metabolic processes such as nitrogen assimilation, the biosynthesis of fatty acids, amino acids, vitamins, and hormones are localized to plant chloroplasts. The biosynthetic pathways in chloroplasts are tightly regulated, and especially the reduction/oxidation (redox) signals play important roles in controlling many developmental and metabolic processes in chloroplasts. Thioredoxins are universal regulatory proteins that mediate redox signals in chloroplasts. They are able to modify the structure and function of their target proteins by reduction of disulfide bonds. Oxidized thioredoxins are restored via the action of thioredoxin reductases. Two thioredoxin reductase systems exist in plant chloroplasts, the NADPHdependent thioredoxin reductase C (NTRC) and ferredoxin-thioredoxin reductase (FTR). The ferredoxin-thioredoxin system that is linked to photosynthetic light reactions is involved in light-activation of chloroplast proteins. NADPH can be produced via both the photosynthetic electron transfer reactions in light, and in darkness via the pentose phosphate pathway. These different pathways of NADPH production enable the regulation of diverse metabolic pathways in chloroplasts by the NADPH-dependent thioredoxin system. In this thesis, the role of NADPH-dependent thioredoxin system in the redox-control of chloroplast development and metabolism was studied by characterization of Arabidopsis thaliana T-DNA insertion lines of NTRC gene (ntrc) and by identification of chloroplast proteins regulated by NTRC. The ntrc plants showed the strongest visible phenotypes when grown under short 8-h photoperiod. This indicates that i) chloroplast NADPH-dependent thioredoxin system is non-redundant to ferredoxinthioredoxin system and that ii) NTRC particularly controls the chloroplast processes that are easily imbalanced in daily light/dark rhythms with short day and long night. I identified four processes and the redox-regulated proteins therein that are potentially regulated by NTRC; i) chloroplast development, ii) starch biosynthesis, iii) aromatic amino acid biosynthesis and iv) detoxification of H2O2. Such regulation can be achieved directly by modulating the redox state of intramolecular or intermolecular disulfide bridges of enzymes, or by protecting enzymes from oxidation in conjunction with 2-cysteine peroxiredoxins. This thesis work also demonstrated that the enzymatic antioxidant systems in chloroplasts, ascorbate peroxidases, superoxide dismutase and NTRC-dependent 2-cysteine peroxiredoxins are tightly linked up to prevent the detrimental accumulation of reactive oxygen species in plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

All aerobic organisms have to deal with the toxicity of oxygen. Oxygen enables more efficient energy production compared to anaerobic respiration or fermentation, but at the same time reactive oxygen species (ROS) are being formed. ROS can also be produced by external factors such as UV-radiation and contamination. ROS can cause damage to biomolecules such as DNA, lipids and proteins and organisms try to keep the damage as small as possible by repairing biomolecules and metabolizing ROS. All ROS are not harmful, because they are used as signaling molecules. To cope against ROS organism have an antioxidant (AOX) system which consists both enzymatic and non-enzymatic AOX defense. Some AOX are produced by the organism itself and some are gained via diet. In this thesis I studied environmentally caused changes in the redox regulation of different wild vertebrate animals to gain knowledge on the temporal, spatial and pollution-derived-effects on the AOX systems. As study species I used barn swallow, ringed seal and the Baltic salmon. For the barn swallow the main interest was the seasonal fluctuation in the redox regulation and its connection to migration and breeding. The more contaminated ringed seals of the Baltic Sea were compared to seals from cleaner Svalbard to investigate whether they suffered from contaminant induced oxidative stress. The regional and temporal variation in redox regulation and regional variation in mRNA and protein expressions of Baltic salmon were studied to gain knowledge if the salmon from different areas are equally stressed. As a comparative aspect the redox responses of these different species were investigated to see which parts of the AOX system are substantial in which species. Certain parts of AOX system were connected to breeding and others to migration in barn swallows, there was also differences in biotransformation between birds caught from Africa and Finland. The Baltic ringed seal did not differ much from the seals from Svalbard, despite the difference in contaminant load. A possible explanation to this could be the enhanced AOX mechanisms against dive-associated oxidative stress in diving air-breathing animals, which also helps to cope with ROS derived from other sourses. The Baltic salmon from Gulf of Finland (GoF) showed higher activities in their AOX defense enzymes and more oxidative damage than fish from other areas. Also on mRNA and proteomic level, stress related metabolic changes were most profound in in the fish from GoF. Mainly my findings on species related differences followed the pattern of mammals showing highest activities and least damage and birds showing lower activities and most damage, fish being intermediate. In general, the glutathione recycling-related enzymes and the ratio of oxidized and reduced glutathione seemed to be the most affected parameters in all of the species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Consumers’ increasing awareness of healthiness and sustainability of food presents a great challenge to food industry to develop healthier, biologically active and sustainable food products. Bioactive peptides derived from food proteins are known to possess various biological activities. Among the activities, the most widely studied are antioxidant activities and angiotensin I converting enzyme (ACE) inhibitory activity related to blood pressure regulation and antihypertensive effects. Meanwhile, vast amounts of byproducts with high protein content are produced in food industry, for example potato and rapeseed industries. The utilization of these by-products could be enhanced by using them as a raw material for bioactive peptides. The objective of the present study was to investigate the production of bioactive peptides with ACE inhibitory and antioxidant properties from rapeseed and potato proteins. Enzymatic hydrolysis and fermentation were utilized for peptide production, ultrafiltration and solid-phase extraction were used to concentrate the active peptides, the peptides were fractionated with liquid chromatographic processes, and the peptides with the highest ACE inhibitory capacities were putified and analyzed with Maldi-Tof/Tof to identify the active peptide sequences. The bioavailability of the ACE inhibitory peptides was elucidated with an in vitro digestion model and the antihypertensive effects in vivo of rapeseed peptide concentrates were investigated with a preventive premise in 2K1C rats. The results showed that rapeseed and potato proteins are rich sources of ACE inhibitory and antioxidant peptides. Enzymatic hydrolysis released the peptides effectively whereas fermentation produced lower activities.The native enzymes of potato were also able to release ACE inhibitory peptides from potato proteins without the addition of exogenous enzymes. The rapeseed peptide concentrate was capable of preventing the development of hypertension in vivo in 2K1C rats, but the quality of rapeseed meal used as raw material was found to affect considerably the antihypertensive effects and the composition of the peptide fraction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyketides are a diverse group of natural products produced in many bacteria, fungi and plants. These metabolites have diverse biological activities and several members of this group are in clinical use as antibiotics, anticancer agents, antifungals and immunosuppressants. The different polyketides are produced by polyketide synthases, which catalyze the condensation of extender units into various polyketide scaffolds. After the biosynthesis of the polyketide backbone, more versatility is created to the molecule by tailoring enzymes catalyzing for instance hydroxylations, methylations and glycosylations. Flavoprotein monooxygenases (FPMO) and short-chain alcohol dehydrogenases/reductases (SDR) are two enzyme families that catalyze unusual tailoring reactions in the biosynthesis of natural products. In the experimental section, functions of homologous FPMO and SDR tailoring enzymes from five different angucycline pathways were studied in vitro. The results revealed how different angucyclinones are produced from a common intermediate and that FPMO JadH and SDR LanV are responsible for the divergence of jadomycins and landomycins, respectively, from other angucyclines. Structural studies of these tailoring enzymes revealed differences between homologous enzymes and enabled the use of structure-based protein engineering. Mutagenesis experiments gave important information about the enzymes behind the evolution of distinct angucycline metabolites. These experiments revealed a correlation between the substrate inhibition and bi-functionality in JadH homologue PgaE. In the case of LanV, analysis of mutagenesis results revealed that the difference between the stereospecificities of LanV and its homologues CabV and UrdMred is unexpectedly related to the conformation of the substrate rather than to the structure of the enzyme. Altogether, the results presented here have improved our knowledge about different steps of angucycline biosynthesis and the reaction mechanisms used by the tailoring enzymes behind these steps. This information can hopefully be used to modify these enzymes to produce novel metabolites, which have new biological targets or possess novel modes-of-action. The understanding of these unusual enzyme mechanisms is also interesting to enzymologists outside the field of natural product research.