3 resultados para Anti inflammatory drugs

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cytochrome P450 (CYP) enzymes play a pivotal role in the metabolism of many drugs. Inhibition of CYP enzymes usually increases the plasma concentrations of their substrate drugs and can thus alter the safety and efficacy of these drugs. The metabolism of many widely used nonsteroidal antiinflammatory drugs (NSAIDs) as well as the metabolism of the antidepressant venlafaxine is nown to be catalyzed by CYP enzymes. In the present studies, the effect of CYP inhibition on the armacokinetics and pharmacodynamics of NSAIDs and venlafaxine was studied in clinical trials with healthy volunteers and with a crossover design, by using different antifungal agents as CYP inhibitors. The results of these studies demonstrate that the inhibition of CYP enzymes leads to increased concentrations of NSAIDs. In most cases, the exposure to ibuprofen, diclofenac, etoricoxib, and meloxicam was increased 1.5to 2 fold when they were used concomitantly with antifungal agents. CYP2D6 inhibitor, terbinafine, substantially increased the concentration of parent venlafaxine, whereas the concentration of active moiety of venlafaxine (parent drug plus active metabolite) was only slightly increased. Voriconazole, an inhibitor of the minor metabolic pathway of venlafaxine, produced only minor changes in the pharmacokinetics of venlafaxine. These studies show that an evident increase in the concentrations of NSAIDs may be expected, if they are used concomitantly with CYP inhibitors. However, as NSAIDs are generally well tolerated, use of single doses of NSAIDs concomitantly with CYP inhibitors is not likely to adversely affect patient safety, whereas clinical relevance of longterm concomitant use of NSAIDs with CYP inhibitors needs further investigation. CYP2D6 inhibitors considerably affect the pharmacokinetics of venlafaxine, but the clinical significance of this interaction remains unclear.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thousands of tons of pharmaceuticals are consumed yearly worldwide. Due to the continuous and increasing consumption and their incomplete elimination in wastewater treatment plants (WWTP), pharmaceuticals and their metabolites can be detected in receiving waters, although at low concentrations (ng to low μg/L). As bioactive molecules the presence of pharmaceuticals in the aquatic environment must be considered potentially hazardous for the aquatic organisms. In this thesis, the biotransformation and excretion of pharmaceuticals in fish was studied. The main biotransformation pathways of three antiinflammatory drugs, diclofenac, naproxen and ibuprofen, in rainbow trout were glucuronidation and taurine conjugation of the parent compounds and their phase I metabolites. The same metabolites were present in fish bile in aquatic exposures as in fish dosed with intraperitoneal injection. Higher bioconcentration factor in bile (BCFbile) was found for ibuprofen when compared to diclofenac and naproxen. Laboratory exposure studies were followed by a study of uptake of pharmaceuticals in a wild fish population living in lake contaminated with WWTP effluents. Of the analyzed 17 pharmaceuticals and six phase I metabolites, only diclofenac, naproxen and ibuprofen was present in bream and roach bile. It was shown, that diclofenac, naproxen and ibuprofen excreted by the liver can be found in rainbow trout and in two native fish species living in the receiving waters. In the bream and roach bile, the concentrations of diclofenac, naproxen and ibuprofen were roughly 1000 times higher than those found in the lake water, while in the laboratory exposures, the bioconcentration of the compounds and their metabolites in rainbow trout bile were at the same level as in wild fish or an order of magnitude higher. Thus, the parent compounds and their metabolites in fish bile can be used as a reliable biomarker to monitor the exposure of fish to environmental pharmaceuticals present in water receiving discharges from WWTPs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Humans are profoundly changing aquatic environments through climate change and the release of nutrients and chemicals. To understand the effects of these changes on natural populations, knowledge on individuals’ environmental responses is needed. At the molecular level, the environmental responses are partly mediated by chances in messenger RNA and protein levels. In this thesis I study messenger RNA and protein responses to an assortment of environmental stressors in fish. As daily (diel) rhythms are known to be ubiquitous in different tissues, I particularly focus on diel patterns in the responses. The studied species are the three-spined stickleback (Gasterosteus aculeatus L.) and the Arctic char (Salvelinus alpinus L.), both of which have circumpolar distribution in the Northern hemisphere. In the first two studies, three-spined sticklebacks were exposed to both the non-steroidal anti-inflammatory drug diclofenac and low-oxygen conditions (hypoxia), and their responses measured at separate time points in the liver and gills. The results show how the seemingly unrelated environmental stressors, hypoxia and anti-inflammatory drugs, can have harmful combined effects that differ from the effects of each stressor alone. Moreover, both stressors disturbed natural diel patterns in gene expression. In the third study, I studied the responses of three-spined sticklebacks to two test chemicals: one used in hormonal medicine (17α-ethinyl-oestradiol) and one used as a plasticizer and solvent chemical (di-n-butyl phthalate). The results suggest that the phthalate can affect genes related to spermatogenesis in fish testes, while estrogen-mimicking compounds can lead to numerous disturbances in the endocrine system. In the final study, the temperature-dependence of diel rhythms in messenger RNA levels were evaluated in the liver tissue of the Arctic char, a cold-adapted salmonid. The results show that cold acclimation repressed diel rhythms in gene expression compared to warm-acclimated fish, in which the expression of hundreds of genes was rhythmic, suggesting the circadian clock of the Arctic fish species can be sensitive to temperature. Overall, the results of the thesis indicate that fishes’ responses to abiotic factors interact with their diel rhythms, and more studies on the consequences of these interactions are needed to comprehensively understand human impacts on ecosystems.