1 resultado para Animals -- Protecció -- Aspectes ètics i morals
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
All aerobic organisms have to deal with the toxicity of oxygen. Oxygen enables more efficient energy production compared to anaerobic respiration or fermentation, but at the same time reactive oxygen species (ROS) are being formed. ROS can also be produced by external factors such as UV-radiation and contamination. ROS can cause damage to biomolecules such as DNA, lipids and proteins and organisms try to keep the damage as small as possible by repairing biomolecules and metabolizing ROS. All ROS are not harmful, because they are used as signaling molecules. To cope against ROS organism have an antioxidant (AOX) system which consists both enzymatic and non-enzymatic AOX defense. Some AOX are produced by the organism itself and some are gained via diet. In this thesis I studied environmentally caused changes in the redox regulation of different wild vertebrate animals to gain knowledge on the temporal, spatial and pollution-derived-effects on the AOX systems. As study species I used barn swallow, ringed seal and the Baltic salmon. For the barn swallow the main interest was the seasonal fluctuation in the redox regulation and its connection to migration and breeding. The more contaminated ringed seals of the Baltic Sea were compared to seals from cleaner Svalbard to investigate whether they suffered from contaminant induced oxidative stress. The regional and temporal variation in redox regulation and regional variation in mRNA and protein expressions of Baltic salmon were studied to gain knowledge if the salmon from different areas are equally stressed. As a comparative aspect the redox responses of these different species were investigated to see which parts of the AOX system are substantial in which species. Certain parts of AOX system were connected to breeding and others to migration in barn swallows, there was also differences in biotransformation between birds caught from Africa and Finland. The Baltic ringed seal did not differ much from the seals from Svalbard, despite the difference in contaminant load. A possible explanation to this could be the enhanced AOX mechanisms against dive-associated oxidative stress in diving air-breathing animals, which also helps to cope with ROS derived from other sourses. The Baltic salmon from Gulf of Finland (GoF) showed higher activities in their AOX defense enzymes and more oxidative damage than fish from other areas. Also on mRNA and proteomic level, stress related metabolic changes were most profound in in the fish from GoF. Mainly my findings on species related differences followed the pattern of mammals showing highest activities and least damage and birds showing lower activities and most damage, fish being intermediate. In general, the glutathione recycling-related enzymes and the ratio of oxidized and reduced glutathione seemed to be the most affected parameters in all of the species.