11 resultados para Animal studies
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Reconstruction of defects in the craniomaxillofacial (CMF) area has mainly been based on bone grafts or metallic fixing plates and screws. Particularly in the case of large calvarial and/or craniofacial defects caused by trauma, tumours or congenital malformations, there is a need for reliable reconstruction biomaterials, because bone grafts or metallic fixing systems do not completely fulfill the criteria for the best possible reconstruction methods in these complicated cases. In this series of studies, the usability of fibre-reinforced composite (FRC) was studied as a biostable, nonmetallic alternative material for reconstructing artificially created bone defects in frontal and calvarial areas of rabbits. The experimental part of this work describes the different stages of the product development process from the first in vitro tests with resin-impregnated fibrereinforced composites to the in vivo animal studies, in which this FRC was tested as an implant material for reconstructing different size bone defects in rabbit frontal and calvarial areas. In the first in vitro study, the FRC was polymerised in contact with bone or blood in the laboratory. The polymerised FRC samples were then incubated in water, which was analysed for residual monomer content by using high performance liquid chromatography (HPLC). It was found that this in vitro polymerisation in contact with bone and blood did not markedly increase the residual monomer leaching from the FRC. In the second in vitro study, different adhesive systems were tested in fixing the implant to bone surface. This was done to find an alternative implant fixing system to screws and pins. On the basis of this study, it was found that the surface of the calvarial bone needed both mechanical and chemical treatments before the resinimpregnated FRC could be properly fixed onto it. In three animal studies performed with rabbit frontal bone defects and critical size calvarial bone defect models, biological responses to the FRC implants were evaluated. On the basis of theseevaluations, it can be concluded that the FRC, based on E-glass (electrical glass) fibres forming a porous fibre veil enables the ingrowth of connective tissues to the inner structures of the material, as well as the bone formation and mineralization inside the fibre veil. Bone formation could be enhanced by using bioactive glass granules fixed to the FRC implants. FRC-implanted bone defects healed partly; no total healing of defects was achieved. Biological responses during the follow-up time, at a maximum of 12 weeks, to resin-impregnated composite implant seemed to depend on the polymerization time of the resin matrix of the FRC. Both of the studied resin systems used in the FRC were photopolymerised and the heat-induced postpolymerisation was used additionally.
Resumo:
Virtually every cell and organ in the human body is dependent on a proper oxygen supply. This is taken care of by the cardiovascular system that supplies tissues with oxygen precisely according to their metabolic needs. Physical exercise is one of the most demanding challenges the human circulatory system can face. During exercise skeletal muscle blood flow can easily increase some 20-fold and its proper distribution to and within muscles is of importance for optimal oxygen delivery. The local regulation of skeletal muscle blood flow during exercise remains little understood, but adenosine and nitric oxide may take part in this process. In addition to acute exercise, long-term vigorous physical conditioning also induces changes in the cardiovasculature, which leads to improved maximal physical performance. The changes are largely central, such as structural and functional changes in the heart. The function and reserve of the heart’s own vasculature can be studied by adenosine infusion, which according to animal studies evokes vasodilation via it’s a2A receptors. This has, however, never been addressed in humans in vivo and also studies in endurance athletes have shown inconsistent results regarding the effects of sport training on myocardial blood flow. This study was performed on healthy young adults and endurance athletes and local skeletal and cardiac muscle blod flow was measured by positron emission tomography. In the heart, myocardial blood flow reserve and adenosine A2A receptor density, and in skeletal muscle, oxygen extraction and consumption was also measured. The role of adenosine in the control of skeletal muscle blood flow during exercise, and its vasodilator effects, were addressed by infusing competitive inhibitors and adenosine into the femoral artery. The formation of skeletal muscle nitric oxide was also inhibited by a drug, with and without prostanoid blockade. As a result and conclusion, it can be said that skeletal muscle blood flow heterogeneity decreases with increasing exercise intensity most likely due to increased vascular unit recruitment, but exercise hyperemia is a very complex phenomenon that cannot be mimicked by pharmacological infusions, and no single regulator factor (e.g. adenosine or nitric oxide) accounts for a significant part of exercise-induced muscle hyperemia. However, in the present study it was observed for the first time in humans that nitric oxide is not only important regulator of the basal level of muscle blood flow, but also oxygen consumption, and together with prostanoids affects muscle blood flow and oxygen consumption during exercise. Finally, even vigorous endurance training does not seem to lead to supranormal myocardial blood flow reserve, and also other receptors than A2A mediate the vasodilator effects of adenosine. In respect to cardiac work, atheletes heart seems to be luxuriously perfused at rest, which may result from reduced oxygen extraction or impaired efficiency due to pronouncedly enhanced myocardial mass developed to excel in strenuous exercise.
Resumo:
Th2-solujen erilaistumista ohjaavat säätelyverkostot ja niiden tutkiminen proteomiikan avulla Astma ja allergiat ovat laajalle levinneitä ja vakavia sairauksia, joista kärsivät miljoonat ihmiset ympäri maailmaa. Koe-eläimillä tehdyt tutkimukset osoittavat, että interleukiini-4 (IL-4) on tärkeä allergisen astman ja allergioiden kehittymiselle ja kroonistumiselle. Se ohjaa T-auttajasolujen (Th-solujen) kehittymistä Th2-tyypin soluiksi, joilla on merkittävä rooli näiden tautien puhkeamisessa. Th2-solut tuottavat myös itse IL-4:ä, joka edesauttaa taudin seuraavien vaiheiden kehittymistä. Erityisesti STAT6-proteiini, joka aktivoituu IL-4-stimulaation seurauksena, on tarpeen Th2- vasteen syntymiselle ja kroonistumiselle antigeenin aiheuttamassa keuhkoputkien astmaattisessa tulehduksessa. Väitöskirjatyöni tarkoituksena oli käyttää kaksidimensionaaliseen elektroforeesiin (2- DE) perustuvaa proteomiikkaa ja massaspektrometriaa uusien Th2-solujen erilaistumista säätelevien proteiinien tunnistamiseksi. Erilaistumattomat Th-solut eristettiin vastasyntyneen napaverestä tai hiiren pernasta. Solut aktivoitiin Tsolureseptorin ja ns. ko-stimulatoristen reseptorien kautta ja erilaistettiin joko Th1- tai Th2-suuntaan vastaavasti erilaistavien IL-12- ja IL-4-sytokiinien avulla. Ensimmäisessä tutkimuksessa in vitro -erilaistettujen Th1- ja Th2-solujen proteomeja verrattiin keskenään proteiinien ilmenemisessä tai proteiinimodifikaatioissa olevien erojen tunnistamiseksi. Kaksi muuta päätutkimusta keskittyivät IL-4:n aiheuttamaan proteiinitason säätelyyn ensimmäisen vuorokauden aikana T-soluaktivaation jälkeen. Näistä ensimmäisessä IL-4:n aiheuttamia eroja tunnistettiin aktivoiduista ihmisen Thsoluista. IL-4:n todettiin säätelevän useita proteiineja kaspaasien välittämissä signalointiteissä sekä lisäävän T-solujen elävyyttä ja aktivoitumista. Toisessa tutkimuksessa STAT6-poistogeenisten hiirien lymfosyyttien proteomia verrattiin villityypin kontrollisoluihin T-soluaktivaation ja IL-4-stimulaation jälkeen. Näissä tutkimuksissa karakterisoitiin useita uusia IL-4:n ja STAT6:n kohdeproteiineja ja löydettiin uusia säätelyverkostoja. Tutkimustulokset ovat johtaneet uusiin Th2-erilaistumismekanismeja koskeviin hypoteeseihin.
Resumo:
Previous studies have demonstrated that clinical pulpal pain can induce the expression of pro-inflammatory neuropeptides in the adjacent gingival crevice fluid (GCF). Vasoactive agents such as substance P (SP) are known to contribute to the inflammatory type of pain and are associated with increased blood flow. More recent animal studies have shown that application of capsaicin on alveolar mucosa provokes pain and neurogenic vasodilatation in the adjacent gingiva. Pain-associated inflammatory reactions may initiate expression of several pro- and anti-inflammatory mediators. Collagenase-2 (MMP-8) has been considered to be the major destructive protease, especially in the periodontitis-affected gingival crevice fluid (GCF). MMP-8 originates mostly from neutrophil leukocytes, the first line of defence cells that exist abundantly in GCF, especially in inflammation. With this background, we wished to clarify the spatial extensions and differences between tooth-pain stimulation and capsaicin-induced neurogenic vasodilatation in human gingiva. Experiments were carried out to study whether tooth stimulation and capsaicin stimulation of alveolar mucosa would induce changes in GCF MMP-8 levels and whether tooth stimulation would release neuropeptide SP in GCF. The experiments were carried out on healthy human volunteers. During the experiments, moderate and high intensity painful tooth stimulation was performed by a constant current tooth stimulator. Moderate tooth stimulation activates A-delta fibres, while high stimulation also activates C-fibres. Painful stimulation of the gingiva was achieved by topical application of capsaicin-moistened filter paper on the mucosal surface. Capsaicin is known to activate selectively nociceptive C-fibres of stimulated tissue. Pain-evoked vasoactive changes in gingivomucosal tissues were mapped by laser Doppler imaging (LDI), which is a sophisticated and non-invasive method for studying e.g. spatial and temporal characteristics of pain- and inflammation-evoked blood flow changes in gingivomucosal tissues. Pain-evoked release of MMP-8 in GCF samples was studied by immunofluorometric assay (IFMA) and Western immunoblotting. The SP levels in GCF were analysed by Enzyme immunoassay (EIA). During the experiments, subjective stimulus-evoked pain responses were determined by a visual analogue pain scale. Unilateral stimulation of alveolar mucosa and attached gingiva by capsaicin evoked a distinct neurogenic vasodilatation in the ipsilateral gingiva, which attenuated rapidly at the midline. Capsaicin stimulation of alveolar mucosa provoked clear inflammatory reactions. In contrast to capsaicin stimuli, tooth stimulation produced symmetrical vasodilatations bilaterally in the gingiva. The ipsilateral responses were significantly smaller during tooth stimulation than during capsaicin stimuli. The current finding – that tooth stimulation evokes bilateral vasodilatation while capsaicin stimulation of the gingiva mainly produces unilateral vasodilatation – emphasises the usefulness of LDI in clarifying spatial features of neurogenic vasoactive changes in the intra-oral tissues. Capsaicin stimulation of the alveolar mucosa induced significant elevations in MMP-8 levels and activation in GCF of the adjacent teeth. During the experiments, no marked changes occurred in MMP-8 levels in the GCF of distantly located teeth. Painful stimulation of the upper incisor provoked elevations in GCF MMP-8 and SP levels of the stimulated tooth. The GCF MMP-8 and SP levels of the non-stimulated teeth were not changed. These results suggest that capsaicin-induced inflammatory reactions in gingivomucosal tissues do not cross the midline in the anterior maxilla. The enhanced reaction found during stimulation of alveolar mucosa indicates that alveolar mucosa is more sensitive to chemical irritants than the attached gingiva. Analysis of these data suggests that capsaicin-evoked neurogenic inflammation in the gingiva can trigger the expression and activation of MMP-8 in GCF of the adjacent teeth. In this study, it is concluded that experimental tooth pain at C-fibre intensity can induce local elevations in MMP-8 and SP levels in GCF. Depending on the role of MMP-8 in inflammation, in addition to surrogated tissue destruction, the elevated MMP-8 in GCF may also reflect accelerated local defensive and anti-inflammatory reactions.
Resumo:
The prevalence of obesity and type 2 diabetes has increased at an alarming rate in developed countries. It seems in the light of current knowledge that metabolic syndrome may not develop at all without NAFLD, and NAFLD is estimated to be as common as metabolic syndrome in western population (23 % occurrence). Fat in the liver is called ectopic fat, which is triacylglycerols within the cells of non-adipose tissue. Serum alanine aminotransferase (ALT) values correlate positively with liver fat proportions, and increased activity of ALT predicts type 2 diabetes independently from obesity. Berries, high in natural bioactive compounds, have indicated the potential to reduce the risk of obesity-related diseases. Ectopic fat induces common endocrine excretion of adipose tissue resulting in the overproduction of inflammatory markers, which further induce insulin resistance by multiple mechanisms. Insulin resistance inducing hyperinsulinemia and lipolysis in adipocytes increases the concentration of free fatty acids and consequently causes further fat accumulation in hepatocytes. Polyphenolic fractions of berries have been shown to reverse inflammatory reaction cascades in in vitro and animal studies, and moreover to decrease ectopic fat accumulation. The aim of this thesis was to explore the role of northern berries in obesity-related diseases. The absorption and metabolism of selected berry polyphenols, flavonol glycosides and anthocyanins, was investigated in humans, and metabolites of the studied compounds were identified in plasma and urine samples (I, II). Further, the effects of berries on the risk factors of metabolic syndrome were studied in clinical intervention trials (III, IV), and the different fractions of sea buckthorn berry were tested for their ability to reduce postprandial glycemia and insulinemia after high-glucose meal in a postprandial study with humans (V). The marked impact of mixed berries on plasma ALT values (III), as well as indications of the positive effects of sea buckthorn, its fractions and bilberry on omental adiposity and adhesion molecules (IV) were observed. In study V, sea buckthorn and its polyphenol fractions had a promising effect on potprandial metabolism after high-glucose meal. In the literature review, the possible mechanisms behind the observed effects have been discussed with a special emphasis on ectopic fat accumulation. The literature review indicated that especially tannins and flavonoids have shown potential in suppressing diverse reaction cascades related to systemic inflammation, ectopic fat accumulation and insulin resistance development.
Resumo:
Neste Oil has introduced plant oils and animal fats for the production of NExBTL renewable diesel, and these raw materials differ from the conventional mineral based oils. One subject of new raw materials study is thermal degradation, or in another name pyrolysis, of these organic oils and fats. The aim of this master’s thesis is to increase knowledge on thermal degradation of these new raw materials, and to identify possible gaseous harmful thermal degradation compounds. Another aim is to de-termine the health and environmental hazards of identified compounds. One objective is also to examine the formation possibilities of hazardous compounds in the produc-tion of NExBTL-diesel. Plant oils and animal fats consist mostly of triglycerides. Pyrolysis of triglycerides is a complex phenomenon, and many degradation products can be formed. Based on the literature studies, 13 hazardous degradation products were identified, one of which was acrolein. This compound is very toxic and dangerous to the environment. Own pyrolysis experiments were carried out with rapeseed and palm oils, and with a mix-ture of palm oil and animal fat. At least 12 hazardous compounds, including acrolein, were analysed from the gas phase. According to the experiments, the factors which influence on acrolein formation are the time of the experiment, the sphere (air/hydrogen) in which the experiment is carried out, and the characteristics of the used oil. The production of NExBTL-diesel is not based on pyrolysis. This is why thermal degradation is possible only when abnormal process conditions prevail.
Resumo:
The development of load-bearing osseous implant with desired mechanical and surface properties in order to promote incorporation with bone and to eliminate risk of bone resorption and implant failure is a very challenging task. Bone formation and resoption processes depend on the mechanical environment. Certain stress/strain conditions are required to promote new bone growth and to prevent bone mass loss. Conventional metallic implants with high stiffness carry most of the load and the surrounding bone becomes virtually unloaded and inactive. Fibre-reinforced composites offer an interesting alternative to metallic implants, because their mechanical properties can be tailored to be equal to those of bone, by the careful selection of matrix polymer, type of fibres, fibre volume fraction, orientation and length. Successful load transfer at bone-implant interface requires proper fixation between the bone and implant. One promising method to promote fixation is to prepare implants with porous surface. Bone ingrowth into porous surface structure stabilises the system and improves clinical success of the implant. The experimental part of this work was focused on polymethyl methacrylate (PMMA) -based composites with dense load-bearing core and porous surface. Three-dimensionally randomly orientated chopped glass fibres were used to reinforce the composite. A method to fabricate those composites was developed by a solvent treatment technique and some characterisations concerning the functionality of the surface structure were made in vitro and in vivo. Scanning electron microscope observations revealed that the pore size and interconnective porous architecture of the surface layer of the fibre-reinforced composite (FRC) could be optimal for bone ingrowth. Microhardness measurements showed that the solvent treatment did not have an effect on the mechanical properties of the load-bearing core. A push-out test, using dental stone as a bone model material, revealed that short glass fibre-reinforced porous surface layer is strong enough to carry load. Unreacted monomers can cause the chemical necrosis of the tissue, but the levels of leachable resisidual monomers were considerably lower than those found in chemically cured fibre-reinforced dentures and in modified acrylic bone cements. Animal experiments proved that surface porous FRC implant can enhance fixation between bone and FRC. New bone ingrowth into the pores was detected and strong interlocking between bone and the implant was achieved.
Resumo:
The action of the neurotransmitters dopamine (DA) and serotonin (5-HT) at synapses is terminated by their rapid reuptake into presynaptic nerve endings via plasma membrane dopamine (DAT) and serotonin (SERT) transporters. Alterations in the function of these transporters have been suggested as a feature of several neurological and neuropsychiatric diseases, such as Parkinson’s disease (PD), depression, and anxiety. A suitable clinical method for studying these transporters non-invasively in vivo is positron emission tomography (PET) utilizing radiopharmaceuticals (tracers) labelled with short-lived positron-emitting radionuclides. The aim of this study was to evaluate in rats two novel radiotracers, [18F]beta -CFT-FP and 18FFMe-McN, for imaging DAT and SERT, respectively, using in vitro, ex vivo and in vivo methods. Substituting an N-methyl in [18F]beta-CFT, a well known DAT tracer, with a 18Ffluoropropyl group significantly changed the properties of the tracer. [18F]beta- CFT showed slow kinetics and metabolism, and a high specific uptake in the striatum, whereas [18F]beta-CFT-FP showed fast kinetics and metabolism, and a moderate specific uptake in the striatum. [18F]betaCFT-FP was selective for DAT; but [18F]beta-CFT also bound to the noradrenaline transporter. [18F]beta-CFT-FP may be a suitable PET tracer for imaging the striatal DAT sites, but a tracer with a higher affinity is needed for imaging extrastriatal DAT sites. In rats, 18FFMe-McN showed high target-to-non-target ratios, specificity and selectivity for SERT, but slow kinetics. However, 18FFMe-McN reveals potential for imaging SERT, at least in pre-clinical studies. In addition, the sensitivities of [18F]beta CFT and [18 F]FDOPA (a precursor of DA) for detecting mild nigrostriatal hypofunction were compared in an animal model of PD. The uptake of [18F]FDOPA was significantly affected by compensatory effects in dopaminergic cells, whereas [18F]beta-CFT was more sensitive and therefore more suitable for PET studies of mild dopaminergic symptoms. In conclusion, both novel tracers, [18F]-CFT-FP and 18FFMe-McN, have potential, but are not optimal PET tracers for DAT and SERT imaging in rats, respectively. [18F]beta-CFT is superior to [18F]FDOPA for imaging mild nigral lesions in rat brains.
Resumo:
Unlike their counterparts in Europe and America, the citizen organizations acting for the well-being of animals in Japan have not received scholarly attention. In this research, I explore the activities of twelve Japanese pro-animal organizations in Tokyo and Kansai area from the perspective of social movement and civil society studies. The concept of a ‘pro-animal organization’ is used to refer generally to the collectives promoting animal well-being. By using the collective action frame analysis and the three core framing tasks – diagnostic, prognostic, and motivational – as the primarily analytical tools, I explore the grievances, tactics, motivational means, constructions of agency and identity as well as framing of civil society articulated in the newsletters and the interviews of the twelve organizations I interviewed in Japan in 2010. As the frame construction is always done in relation to the social and political context, I study how the organizations construct their roles as civil society actors in relation to other actors, such as the state, and the idea of citizen activism. The deficiencies in the animal welfare law and lack of knowledge among the public are identified as the main grievances. The primary tactic to overcome these problems was to educate and inform the citizens and authorities, because most organizations lack the channels to influence politically. The audiences were mostly portrayed as either ignorant bystanders or potential adherents. In order to motivate people to join their cause and to enforce the motivation within the organization, the organizations emphasized their uniqueness, proved their efficiency, claimed credit and celebrated even small improvements. The organizations tended to create three different roles for citizen pro-organizations in civil society: reactive, apolitical and emphatic animal lovers concentrating on saving individual animals, proactive, educative bridge-builders seeking to establish equal collaborative relations with authorities, and corrective, supervising watchdogs demanding change in delinquencies offending animal rights. Based on the results of this research, I suggest that by studying how and why the different relations between civil society and the governing actors of the state are constructed, a more versatile approach to citizens’ activism in its context can be achieved.
Resumo:
The golden standard in nuclear medicine imaging of inflammation is the use of radiolabeled leukocytes. Although their diagnostic accuracy is good, the preparation of the leukocytes is both laborious and potentially hazardous for laboratory personnel. Molecules involved in leukocyte migration could serve as targets for the development of inflammation imaging agents. An excellent target would be a molecule that is absent or expressed at low level in normal tissues, but is induced or up-regulated at the site of inflammation. Vascular adhesion protein-1 (VAP-1) is a very promising target for in vivo imaging, since it is translocated to the endothelial cell surface when inflammation occurs. VAP-1 functions as an endothelial adhesion molecule that participates in leukocyte recruitment to inflamed tissues. Besides being an adhesion molecule, VAP-1 also has enzymatic activity. In this thesis, the targeting of VAP-1 was studied by using Gallium-68 (68Ga) labeled peptides and an Iodine-124 (124I) labeled antibody. The peptides were designed based on molecular modelling and phage display library searches. The new imaging agents were preclinically tested in vitro, as well as in vivo in animal models. The most promising imaging agent appeared to be a peptide belonging to the VAP-1 leukocyte ligand, Siglec-9 peptide. The 68Ga-labeled Siglec-9 peptide was able to detect VAP-1 positive vasculature in rodent models of sterile skin inflammation and melanoma by positron emission tomography. In addition to peptides, the 124I-labeled antibody showed VAP-1 specific binding both in vitro and in vivo. However, the estimated human radiation dose was rather high, and thus further preclinical studies in disease models are needed to clarify the value of this imaging agent. Detection of VAP-1 on endothelium was demonstrated in these studies and this imaging approach could be used in the diagnosis of inflammatory conditions as well as melanoma. These studies provide a proof-of-concept for PET imaging of VAP-1 and further studies are warranted.
Resumo:
Coronary artery disease is an atherosclerotic disease, which leads to narrowing of coronary arteries, deteriorated myocardial blood flow and myocardial ischaemia. In acute myocardial infarction, a prolonged period of myocardial ischaemia leads to myocardial necrosis. Necrotic myocardium is replaced with scar tissue. Myocardial infarction results in various changes in cardiac structure and function over time that results in “adverse remodelling”. This remodelling may result in a progressive worsening of cardiac function and development of chronic heart failure. In this thesis, we developed and validated three different large animal models of coronary artery disease, myocardial ischaemia and infarction for translational studies. In the first study the coronary artery disease model had both induced diabetes and hypercholesterolemia. In the second study myocardial ischaemia and infarction were caused by a surgical method and in the third study by catheterisation. For model characterisation, we used non-invasive positron emission tomography (PET) methods for measurement of myocardial perfusion, oxidative metabolism and glucose utilisation. Additionally, cardiac function was measured by echocardiography and computed tomography. To study the metabolic changes that occur during atherosclerosis, a hypercholesterolemic and diabetic model was used with [18F] fluorodeoxyglucose ([18F]FDG) PET-imaging technology. Coronary occlusion models were used to evaluate metabolic and structural changes in the heart and the cardioprotective effects of levosimendan during post-infarction cardiac remodelling. Large animal models were used in testing of novel radiopharmaceuticals for myocardial perfusion imaging. In the coronary artery disease model, we observed atherosclerotic lesions that were associated with focally increased [18F]FDG uptake. In heart failure models, chronic myocardial infarction led to the worsening of systolic function, cardiac remodelling and decreased efficiency of cardiac pumping function. Levosimendan therapy reduced post-infarction myocardial infarct size and improved cardiac function. The novel 68Ga-labeled radiopharmaceuticals tested in this study were not successful for the determination of myocardial blood flow. In conclusion, diabetes and hypercholesterolemia lead to the development of early phase atherosclerotic lesions. Coronary artery occlusion produced considerable myocardial ischaemia and later infarction following myocardial remodelling. The experimental models evaluated in these studies will enable further studies concerning disease mechanisms, new radiopharmaceuticals and interventions in coronary artery disease and heart failure.