14 resultados para Anaphoric Encapsulation

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tässä työssä ontarkasteltu käytetyn ydinpolttoaineen kapselointilaitoksessa muodostuvia radioaktiivisia jätteitä. Kapselointilaitos rakennetaan Olkiluotoon joko Olkiluodon ydinvoimalaitoksen käytetyn ydinpolttoaineen välivaraston yhteyteen tai loppusijoituslaitokseen kytkettynä laitoksena. Työssä on otettu huomioon molemmat vaihtoehdot ja niiden eroavaisuudet prosessien ja jätemäärien osilta. Kaikki jäte, joka muodostuu kapselointilaitoksen valvonta-alueella, luokitellaan radioaktiiviseksi jätteeksi. Radioaktiivisia jätteitä muodostuu, kun käytetystä ydinpolttoaineesta irronneet radioaktiiviset aineet kontaminoivat laitoksen rakenteita ja laitteita. Muodostuvat radioaktiiviset jätteet kiinteytetään ja sijoitetaan loppusijoitustilan yhteyteen rakennettavaan käyttö- ja käytöstäpoisto-jäteluolaan. Hyvin vähäaktiivinen jäte voidaan vapauttaa valvonnasta aktiivisuusmittauksen jälkeen. Radioaktiivisia jätteitä muodostuu kapselointilaitoksen toiminnan aikana vähäisiä määriä verrattuna ydinvoimalaitoksiin. Vertailtaessa molempien kapselointilaitosvaihtoehtojen radioaktiivisten jätteiden määriä, ainoastaan loppusijoitettavan nestemäisten jätteiden määrässä on eroa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The design methods and languages targeted to modern System-on-Chip designs are facing tremendous pressure of the ever-increasing complexity, power, and speed requirements. To estimate any of these three metrics, there is a trade-off between accuracy and abstraction level of detail in which a system under design is analyzed. The more detailed the description, the more accurate the simulation will be, but, on the other hand, the more time consuming it will be. Moreover, a designer wants to make decisions as early as possible in the design flow to avoid costly design backtracking. To answer the challenges posed upon System-on-chip designs, this thesis introduces a formal, power aware framework, its development methods, and methods to constraint and analyze power consumption of the system under design. This thesis discusses on power analysis of synchronous and asynchronous systems not forgetting the communication aspects of these systems. The presented framework is built upon the Timed Action System formalism, which offer an environment to analyze and constraint the functional and temporal behavior of the system at high abstraction level. Furthermore, due to the complexity of System-on-Chip designs, the possibility to abstract unnecessary implementation details at higher abstraction levels is an essential part of the introduced design framework. With the encapsulation and abstraction techniques incorporated with the procedure based communication allows a designer to use the presented power aware framework in modeling these large scale systems. The introduced techniques also enable one to subdivide the development of communication and computation into own tasks. This property is taken into account in the power analysis part as well. Furthermore, the presented framework is developed in a way that it can be used throughout the design project. In other words, a designer is able to model and analyze systems from an abstract specification down to an implementable specification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present thesis investigated the importance of semantics in generating inferences during discourse processing. Three aspects of semantics, gender stereotypes, implicit causality information and proto-role properties, were used to investigate whether semantics is activated elaboratively during discourse comprehension and what its relative importance is in backward inferencing compared to discourse/structural cues. Visual world eye-tracking studies revealed that semantics plays an important role in both backward and forward inferencing: Gender stereotypes and implicit causality information is activated elaboratively during online discourse comprehension. Moreover, gender stereotypes, implicit causality and proto-role properties of verbs are all used in backward inferencing. Importantly, the studies demonstrated that semantic cues are weighed against discourse/structural cues. When the structural cues consist of a combination of cues that have been independently shown to be important in backward inferencing, semantic effects may be masked, whereas when the structural cues consist of a combination of fewer prominent cues, semantics can have an earlier effect than structural factors in pronoun resolution. In addition, the type of inference matters, too: During anaphoric inferencing semantics has a prominent role, while discourse/structural salience attains more prominence during non-anaphoric inferencing. Finally, semantics exhibits a strong role in inviting new inferences to revise earlier made inferences even in the case the additional inference is not needed to establish coherence in discourse. The findings are generally in line with the Mental Model approaches. Two extended model versions are presented that incorporate the current findings into the earlier literature. These models allow both forward and backward inferencing to occur at any given moment during the course of processing; they also allow semantic and discourse/structural cues to contribute to both of these processes. However, while the Mental Model 1 does not assume interactions between semantic and discourse/structural factors in forward inferencing, the Mental Model 2 does assume such a link.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Immobilization of Burkholderia cepacia Lipase: Kinetic Resolution in Organic Solvents, Ionic Liquids and in Their Mixtures Biocatalysis opens the door to green and sustainable processes in synthetic chemistry allowing the preparation of single enantiomers, since the enzymes are chiral and accordingly able to catalyze chemical reactions under mild conditions. Immobilization of enzymes enhances process robustness, often stabilizes and activates the enzyme, and enables reuse of the same enzyme preparation in multiple cycles. Although hundreds of variations of immobilization methods exist, there is no universal method to yield the highly active, selective and stable enzyme catalysts. Therefore, new methods need to be developed to obtain suitable catalysts for different substrates and reaction environments. Lipases are the most widely used enzymes in synthetic organic chemistry. The literature part together with the experimental part of this thesis discusses of the effects of immobilization methods mostly used to enhance lipase activity, stability and enantioselectivity. Moreover, the use of lipases in the kinetic resolution of secondary alcohols in organic solvents and in ionic liquids is discussed. The experimental work consists of the studies of immobilization of Burkholderia cepacia lipase (lipase PS) using three different methods: encapsulation in sol-gels, cross-linked enzyme aggregates (CLEAs) and supported ionic liquids enzyme catalysts (SILEs). In addition, adsorption of lipase PS on celite was studied to compare the results obtained with sol-gels, CLEAs and SILEs. The effects of immobilization on enzyme activity, enantioselectivity and hydrolysis side reactions were studied in kinetic resolution of three secondary alcohols in organic solvents, in ionic liquids (ILs), and in their mixtures. Lipase PS sol-gels were shown to be active and stable catalysts in organic solvents and solvent:IL mixtures. CLEAs and SILEs were highly active and enantioselective in organic solvents. Sol-gels and SILEs were reusable in several cycles. Hydrolysis side reaction was suppressed in the presence of sol-gels and CLEAs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of the present study was to demonstrate the wide applicability of the novel photoluminescent labels called upconverting phosphors (UCPs) in proximity-based bioanalytical assays. The exceptional features of the lanthanide-doped inorganic UCP compounds stem from their capability for photon upconversion resulting in anti-Stokes photoluminescence at visible wavelengths under near-infrared (NIR) excitation. Major limitations related to conventional photoluminescent labels are avoided, rendering the UCPs a competitive next-generation label technology. First, the background luminescence is minimized due to total elimination of autofluorescence. Consequently, improvements in detectability are expected. Second, at the long wavelengths (>600 nm) used for exciting and detecting the UCPs, the transmittance of sample matrixes is significantly greater in comparison with shorter wavelengths. Colored samples are no longer an obstacle to the luminescence measurement, and more flexibility is allowed even in homogeneous assay concepts, where the sample matrix remains present during the entire analysis procedure, including label detection. To transform a UCP particle into a biocompatible label suitable for bioanalytical assays, it must be colloidal in an aqueous environment and covered with biomolecules capable of recognizing the analyte molecule. At the beginning of this study, only UCP bulk material was available, and it was necessary to process the material to submicrometer-sized particles prior to use. Later, the ground UCPs, with irregular shape, wide size-distribution and heterogeneous luminescence properties, were substituted by a smaller-sized spherical UCP material. The surface functionalization of the UCPs was realized by producing a thin hydrophilic coating. Polymer adsorption on the UCP surface is a simple way to introduce functional groups for bioconjugation purposes, but possible stability issues encouraged us to optimize an optional silica-encapsulation method which produces a coating that is not detached in storage or assay conditions. An extremely thin monolayer around the UCPs was pursued due to their intended use as short-distance energy donors, and much attention was paid to controlling the thickness of the coating. The performance of the UCP technology was evaluated in three different homogeneous resonance energy transfer-based bioanalytical assays: a competitive ligand binding assay, a hybridization assay for nucleic acid detection and an enzyme activity assay. To complete the list, a competitive immunoassay has been published previously. Our systematic investigation showed that a nonradiative energy transfer mechanism is indeed involved, when a UCP and an acceptor fluorophore are brought into close proximity in aqueous suspension. This process is the basis for the above-mentioned homogeneous assays, in which the distance between the fluorescent species depends on a specific biomolecular binding event. According to the studies, the submicrometer-sized UCP labels allow versatile proximity-based bioanalysis with low detection limits (a low-nanomolar concentration for biotin, 0.01 U for benzonase enzyme, 0.35 nM for target DNA sequence).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study examines the signalling of text organisation in research articles (RA) in French. The work concentrates on a particular type of organisation provided by text sequences, i.e. structures organising text to items of which at least some are signalled by markers of addition or order: First… 0… The third point… In addition… / Premièrement… 0… Le troisième point… De plus… By indicating the way the text is organised, these structures guide the reader in the reading process so that he doesn’t need to interpret the text structure himself. The aim of the work is to study factors affecting the marking of text sequences. Why is their structure sometimes signalled explicitly by markers such as secondly, whereas in other places such markers are not used? The corpus is manually XML-annotated and consists of 90 RAs (~800 000 words) in French from the fields of linguistics, education and history. The analysis highlights several factors affecting the marking of text sequences. First, exact markers (such as fist ) seem to be more frequent in sequences where all the items are explicitly signalled by a marker, whereas additive markers (such as moreover) are used in sequences with both explicitly signalled and unmarked items. The marking of explicitly signalled sequences seems thus to be precise and even repetitive, whereas the signalling of sequences with unmarked items is altogether more vague. Second, the marking of text sequences seems to depend on the length of the text. The longer the text segment, the more vague the marking. Additive markers and unmarked items are more frequent in longer sequences possibly covering several pages, whereas shorter sequences are often signalled explicitly by exact markers. Also the marker types vary according to the sequence length. Anaphoric expressions, such as first, are fairly close to their referents and are used in short sequences, connectors, such as secondly, are frequently used in sequences of intermediate length, whereas the longest sequences are often signalled by constructions composed of an ordinal and a noun acting as a subject of the sentence: The first item is… Finally, the marking of text organisation depends also on the discipline the RA belongs to. In linguistics, the marking is fairly frequent and precise; exact markers such as second are the most used, and structures with unmarked items are less common. Similarly, the marking is fairly frequent in education. In this field, however, it is also less precise than in linguistics, with frequent unmarked items and additive markers. History, on the other hand, is characterised by less frequent marking. In addition, when used, the marking in this field is also less precise and less explicit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hen eggs and oats (Avena Sativa) are important materials for the food industry. Today, instead of merely satisfying the feeling of hunger, consumers are asking for healthier, biologically active and environmentally friendly products. The growing awareness of consumers’ increasing demands presents a great challenge to the food industry to develop more sustainable products and utilise modern and effective techniques. The modification of yolk fatty acid composition by means of feed supplements is well understood. Egg yolk phospholipids are polar lipids and are used in several applications including food, cosmetics, pharmaceuticals, and special nutrients. Egg yolk phospholipids are excellent emulsifiers, typically sold as mixtures of phospholipids, triacylglycerols, and cholesterol. However, highly purified and characterised phospholipids are needed in several sophisticated applications. Industrial fractionation of phospholipids is usually based on organic solvents. With these fractionation techniques, some harmful residues of organic solvents may cause problems in further processing. The objective of the present study was to investigate the methods to improve the functional properties of eggs, to develop techniques to isolate the fractions responsible for the specific functional properties of egg yolk lipids, and to apply the developed techniques to plant-based materials, too. Fractionation techniques based on supercritical fluids were utilised for the separation of the lipid fractions of eggs and oats. The chemical and functional characterisation of the fractions were performed, and the produced oat polar lipid fractions were tested as protective barrier in encapsulation processes. Modifying the fatty acid compositions of egg yolks with different types of oil supplements in feed had no affect on their functional or sensory properties. Based on the results of functional and sensory analysis, it is evident that eggs with modified fatty acid compositions are usable in several industrial applications. These applications include liquid egg yolk products used in mayonnaise and salad dressings. Egg yolk powders were utilised in different kinds of fractionation processes. The precipitation method developed in this study resembles the supercritical anti-solvent method, which is typically used in the pharmaceutical industry. With pilot scale supercritical fluid processes, non-polar lipids and polar lipids were successfully separated from commercially produced egg yolk powder and oat flakes. The egg and oat-based polar lipid fractions showed high purities, and the corresponding delipidated fractions produced using supercritical techniques offer interesting starting materials for the further production of bioactive compounds. The oat polar lipid fraction contained especially digalactosyadiacylglycerol, which was shown to have valuable functional properties in the encapsulation of probiotics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the shift towards many-core computer architectures, dataflow programming has been proposed as one potential solution for producing software that scales to a varying number of processor cores. Programming for parallel architectures is considered difficult as the current popular programming languages are inherently sequential and introducing parallelism is typically up to the programmer. Dataflow, however, is inherently parallel, describing an application as a directed graph, where nodes represent calculations and edges represent a data dependency in form of a queue. These queues are the only allowed communication between the nodes, making the dependencies between the nodes explicit and thereby also the parallelism. Once a node have the su cient inputs available, the node can, independently of any other node, perform calculations, consume inputs, and produce outputs. Data ow models have existed for several decades and have become popular for describing signal processing applications as the graph representation is a very natural representation within this eld. Digital lters are typically described with boxes and arrows also in textbooks. Data ow is also becoming more interesting in other domains, and in principle, any application working on an information stream ts the dataflow paradigm. Such applications are, among others, network protocols, cryptography, and multimedia applications. As an example, the MPEG group standardized a dataflow language called RVC-CAL to be use within reconfigurable video coding. Describing a video coder as a data ow network instead of with conventional programming languages, makes the coder more readable as it describes how the video dataflows through the different coding tools. While dataflow provides an intuitive representation for many applications, it also introduces some new problems that need to be solved in order for data ow to be more widely used. The explicit parallelism of a dataflow program is descriptive and enables an improved utilization of available processing units, however, the independent nodes also implies that some kind of scheduling is required. The need for efficient scheduling becomes even more evident when the number of nodes is larger than the number of processing units and several nodes are running concurrently on one processor core. There exist several data ow models of computation, with different trade-offs between expressiveness and analyzability. These vary from rather restricted but statically schedulable, with minimal scheduling overhead, to dynamic where each ring requires a ring rule to evaluated. The model used in this work, namely RVC-CAL, is a very expressive language, and in the general case it requires dynamic scheduling, however, the strong encapsulation of dataflow nodes enables analysis and the scheduling overhead can be reduced by using quasi-static, or piecewise static, scheduling techniques. The scheduling problem is concerned with nding the few scheduling decisions that must be run-time, while most decisions are pre-calculated. The result is then an, as small as possible, set of static schedules that are dynamically scheduled. To identify these dynamic decisions and to find the concrete schedules, this thesis shows how quasi-static scheduling can be represented as a model checking problem. This involves identifying the relevant information to generate a minimal but complete model to be used for model checking. The model must describe everything that may affect scheduling of the application while omitting everything else in order to avoid state space explosion. This kind of simplification is necessary to make the state space analysis feasible. For the model checker to nd the actual schedules, a set of scheduling strategies are de ned which are able to produce quasi-static schedulers for a wide range of applications. The results of this work show that actor composition with quasi-static scheduling can be used to transform data ow programs to t many different computer architecture with different type and number of cores. This in turn, enables dataflow to provide a more platform independent representation as one application can be fitted to a specific processor architecture without changing the actual program representation. Instead, the program representation is in the context of design space exploration optimized by the development tools to fit the target platform. This work focuses on representing the dataflow scheduling problem as a model checking problem and is implemented as part of a compiler infrastructure. The thesis also presents experimental results as evidence of the usefulness of the approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Suomen ydinenergialaki vaatii ydinenergian käytössä syntyvän ydinjätteen käsittelyn ja varastoinnin sekä loppusijoittamisen Suomeen. Fortumin ja TVO:n ydinvoimalaitoksissa syntyvä käytetty ydinpolttoaine tullaan kapseloimaan ja loppusijoittamaan Olkiluotoon rakennettavassa kapselointi- ja loppusijoituslaitoksessa. Tämän työn tavoitteena on muodostaa kokonaiskuva kapselointi- ja loppusijoituslaitoksen säteilysuojelusta aikaisemmin tehtyjen selvitysten ja suunnitelmien perusteella. Kapselointilaitoksella käytetty ydinpolttoaine suljetaan kuparikapseleihin, jotka loppusijoitetaan maan alle loppusijoituslaitoksella. Työn aluksi kuvataan loppusijoitusmenetelmä ja kapselointi- ja loppusijoituslaitoksen käyttötoiminta. Tämän jälkeen käsitellään lainsäädäntöä ja viranomaisohjeita, jotka ohjaavat ydinlaitosten säteilysuojelua. Seuraavaksi käsitellään kapselointi- ja loppusijoituslaitoksella olevia säteilylähteitä. Lisäksi työssä käsitellään kapselointi- ja loppusijoituslaitokselle suunniteltua valvonta-aluetta ja sen säteilyolosuhteiden mukaista vyöhykejakoa. Työssä saatiin tulokseksi kokonaiskuva kapselointi- ja loppusijoituslaitoksen säteilysuojelusta. Kokonaiskuvan muodostamisen lisäksi laadittiin alustavia suunnitelmia käyttötoiminnan säteilysuojelun järjestämisestä. Lisäksi laadittiin ehdotuksia valvonta-alueen tarkemmista rajoista loppusijoituslaitoksella sekä havaittiin laitosten säteilysuojeluun liittyviä ongelmia ja esitettiin ratkaisuja niihin. Ongelmaksi osoittautui muun muassa, että kapselointi- ja loppusijoituslaitoksen valvonta-alueiden luonteiden eroa ei ollut huomioitu suunnitelmissa. Lisäksi todettiin, että nykyisin ydinlaitoksilla käytössä oleva valvonta-alueen vyöhykejako ei vastaa kapselointi- ja loppusijoituslaitosten tarpeita. Näihin esitettiin ratkaisuiksi laitosten välille perustettavaa kenkärajaa ja uuden korkeamman säteilyvyöhykkeen käyttöönottoa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years, there have been studies that show a correlation between the hyperactivity of children and use of artificial food additives, including colorants. This has, in part, led to preference of natural products over products with artificial additives. Consumers have also become more aware of health issues. Natural food colorants have many bioactive functions, mainly vitamin A activity of carotenoids and antioxidativity, and therefore they could be more easily accepted by the consumers. However, natural colorant compounds are usually unstable, which restricts their usage. Microencapsulation could be one way to enhance the stability of natural colorant compounds and thus enable better usage for them as food colorants. Microencapsulation is a term used for processes in which the active material is totally enveloped in a coating or capsule, and thus it is separated and protected from the surrounding environment. In addition to protection by the capsule, microencapsulation can also be used to modify solubility and other properties of the encapsulated material, for example, to incorporate fat-soluble compounds into aqueous matrices. The aim of this thesis work was to study the stability of two natural pigments, lutein (carotenoid) and betanin (betalain), and to determine possible ways to enhance their stability with different microencapsulation techniques. Another aim was the extraction of pigments without the use of organic solvents and the development of previously used extraction methods. Stability of pigments in microencapsulated pigment preparations and model foods containing these were studied by measuring the pigment content after storage in different conditions. Preliminary studies on the bioavailability of microencapsulated pigments and sensory evaluation for consumer acceptance of model foods containing microencapsulated pigments were also carried out. Enzyme-assisted oil extraction was used to extract lutein from marigold (Tagetes erecta) flower without organic solvents, and the yield was comparable to solvent extraction of lutein from the same flowers. The effects of temperature, extraction time, and beet:water ratio on extraction efficiency of betanin from red beet (Beta vulgaris) were studied and the optimal conditions for maximum yield and maximum betanin concentration were determined. In both cases, extraction at 40 °C was better than extraction at 80 °C and the extraction for five minutes was as efficient as 15 or 30 minutes. For maximum betanin yield, the beet:water ratio of 1:2 was better, with possibly repeated extraction, but for maximum betanin concentration, a ratio of 1:1 was better. Lutein was incorporated into oil-in-water (o/w) emulsions with a polar oil fraction from oat (Avena sativa) as an emulsifier and mixtures of guar gum and xanthan gum or locust bean gum and xanthan gum as stabilizers to retard creaming. The stability of lutein in these emulsions was quite good, with 77 to 91 percent of lutein being left after storage in the dark at 20 to 22°C for 10 weeks whereas in spray dried emulsions the retention of lutein was 67 to 75 percent. The retention of lutein in oil was also good at 85 percent. Betanin was incorporated into the inner w1 water phase of a water1-in-oil-inwater2 (w1/o/w2) double emulsion with primary w1/o emulsion droplet size of 0.34 μm and secondary w1/o/w2 emulsion droplet size of 5.5 μm and encapsulation efficiency of betanin of 89 percent. In vitro intestinal lipid digestion was performed on the double emulsion, and during the first two hours, coalescence of the inner water phase droplets was observed, and the sizes of the double emulsion droplets increased quickly because of aggregation. This period also corresponded to gradual release of betanin, with a final release of 35 percent. The double emulsion structure was retained throughout the three-hour experiment. Betanin was also spray dried and incorporated into model juices with different pH and dry matter content. Model juices were stored in the dark at -20, 4, 20–24 or 60 °C (accelerated test) for several months. Betanin degraded quite rapidly in all of the samples and higher temperature and a lower pH accelerated degradation. Stability of betanin was much better in the spray dried powder, with practically no degradation during six months of storage in the dark at 20 to 24 °C and good stability also for six months in the dark at 60 °C with 60 percent retention. Consumer acceptance of model juices colored with spray dried betanin was compared with similar model juices colored with anthocyanins or beet extract. Consumers preferred beet extract and anthocyanin colored model juices over juices colored with spray dried betanin. However, spray dried betanin did not impart any off-odors or off-flavors into the model juices contrary to the beet extract. In conclusion, this thesis describes novel solvent-free extraction and encapsulation processes for lutein and betanin from plant sources. Lutein showed good stability in oil and in o/w emulsions, but slightly inferior in spray dried emulsions. In vitro intestinal lipid digestion showed a good stability of w1/o/w2 double emulsion and quite high retention of betanin during digestion. Consumer acceptance of model juices colored with spray dried betanin was not as good as model juices colored with anthocyanins, but addition of betanin to real berry juice could produce better results with mixture of added betanin and natural berry anthocyanins could produce a more acceptable color. Overall, further studies are needed to obtain natural colorants with good stability for the use in food products.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Atomic Layer Deposition (ALD) is the technology of choice where very thin and highquality films are required. Its advantage is its ability to deposit dense and pinhole-free coatings in a controllable manner. It has already shown promising results in a range of applications, e.g. diffusion barrier coatings for OLED displays, surface passivation layers for solar panels. Spatial Atomic Layer Deposition (SALD) is a concept that allows a dramatic increase in ALD throughput. During the SALD process, the substrate moves between spatially separated zones filled with the respective precursor gases and reagents in such a manner that the exposure sequence replicates the conventional ALD cycle. The present work describes the development of a high-throughput ALD process. Preliminary process studies were made using an SALD reactor designed especially for this purpose. The basic properties of the ALD process were demonstrated using the wellstudied Al2O3 trimethyl aluminium (TMA)+H2O process. It was shown that the SALD reactor is able to deposit uniform films in true ALD mode. The ALD nature of the process was proven by demonstrating self-limiting behaviour and linear film growth. The process behaviour and properties of synthesized films were in good agreement with previous ALD studies. Issues related to anomalous deposition at low temperatures were addressed as well. The quality of the coatings was demonstrated by applying 20 nm of the Al2O3 on to polymer substrate and measuring its moisture barrier properties. The results of tests confirmed the superior properties of the coatings and their suitability for flexible electronics encapsulation. Successful results led to the development of a pilot scale roll-to-roll coating system. It was demonstrated that the system is able to deposit superior quality films with a water transmission rate of 5x10-6 g/m2day at a web speed of 0.25 m/min. That is equivalent to a production rate of 180 m2/day and can be potentially increased by using wider webs. State-of-art film quality, high production rates and repeatable results make SALD the technology of choice for manufacturing ultra-high barrier coatings for flexible electronics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Upconversion photoluminescence is a unique property of mostly certain inorganic materials, which are capable of converting low-energy infrared radiation into a higher-energy emission at visible wavelengths. This anti-Stokes shift enables luminescence detection without autofluorescence, which makes the upconverting materials a highly suitable reporter technology for optical biosensing applications. Furthermore, they exhibit long luminescence lifetime with narrow bandwidths also at the optical window of biomaterials enabling luminescence measurements in challenging sample matrices, such as whole blood. The aim of this thesis was to study the unique properties and the applicability of nano-sized upconverting phosphors (UCNPs) as reporters in biosensing applications. To render the inorganic nanophosphors water-dispersible and biocompatible, they were subjected to a series of surface modifications starting with silica-encapsulation and ending with a bioconjugation step with an analyte-recognizing biomolecule. The paramagnetism of the lanthanide dopants in the nanophosphors was exploited to develop a highly selective separation method for the UCNP-bioconjugates based on the magnetic selectivity of the high gradient magnetic separation (HGMS) system. The applicability of the nano-sized UCNPs as reporters in challenging sample matrices was demonstrated in two homogeneous sensing applications based on upconversion resonance energy transfer (UC-RET). A chemosensor for intracellular pH was developed exploiting UC-RET between the UCNP and a fluorogenic pH-sensitive dye with strongly increasing fluorescence intensity in decreasing pH. The pH-independent emission of the UCNPs at 550 nm was used for referencing. The applicability of the pH-nanosensor for intracellular pH measurement was tested in HeLa cells, and the acidic pH of endosomes could be detected with a confocal fluorescence microscope. Furthermore, a competitive UC-RET-based assay for red blood cell folic acid was developed for the measurement of folate directly from a whole blood sample. The optically transparent window of biomaterials was used in both the excitation and the measurement of the UC-RET sensitized emission of a near-infrared acceptor dye to minimize sample absorption, and the anti-Stokes detection completely eliminated the Stokes-shifted autofluorescence. The upconversion photoluminescence efficiency is known to be dependent on crystallite size, because the increasing surface-to-volume ratio of nano-sized UCNPs renders them more susceptible to quenching effects of the environment than their bulk counterpart. Water is known to efficiently quench the luminescence of lanthanide dopants. In this thesis, the quenching mechanism of water was studied using luminescence decay measurements. Water was found to quench the luminescence of UCNPs by increasing the non-radiative relaxation of the excited state of Yb3+ sensitizer ion, which had a very strong quenching effect on upconversion luminescence intensity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Olkiluodon ja Loviisan ydinvoimalaitoksilla syntyvä käytetty ydinpolttoaine tullaan kapseloimaan ja loppusijoittamaan Posiva Oy:n kapselointi- ja loppusijoituslaitoksella, joka rakennetaan Olkiluotoon. Käytetyn polttoaineen käsittelyssä on huomioitava säteilytyöhön liittyviä säteilysuojelunäkökohtia. Kapseloinnissa ja loppusijoituksessa käsitellään vaarallisia säteilylähteitä, joista merkittävimmät ovat käytetty ydinpolttoaine ja täyden loppusijoituskapselin röntgentarkastuslaitteisto. Posivan laitosten käyttötoiminnalle muodostetaan tässä diplomityössä säteilysuojelun vaatimusmäärittely. Kapseloinnin ja loppusijoituksen säteilytyövaiheet käsitellään yksitellen säteilysuojelun näkökulmasta. Työvaiheille määritetään tarpeelliset säteilysuojelutoimenpiteet ja työvaiheiden suorittamisen säteilysuojeluvaatimukset. Molempien laitosten valvonta-aluejärjestelyjä ja säteilyolosuhteiden vyöhykejakoa tarkennetaan. Työssä määritetään vyöhyke- ja aluerajoilla vaadittavat säteilysuojelutoiminnot sekä kontaminaationhallinnan laatuvaatimukset. Työssä käsitellään myös operatiivisen säteilysuojelun toimenpiteiden laatuvaatimuksia ja tarvittavaa säteilysuojelun sisäistä ohjeistoa. Työn tuloksena on kapselointi- ja loppusijoituslaitoksen käyttötoiminnan operatiivisten säteilysuojelutoimenpiteiden kuvaus. Kapselointi- ja loppusijoituslaitosten säteilysuojelua toteutetaan käyttövaiheen työnsuunnittelulla, operatiivisilla säteilysuojelutoimilla ja rakenteellisin keinoin. Työntekijöiden säteilyannokset minimoidaan välttämällä oleskelua kohonneen säteilytason alueilla. Kapselin röntgentarkastuslaitteiston käytön säteilyturvallisuus on varmistettava ja laitosten käyttötoiminta ei saa aiheuttaa työntekijöille sisäistä säteilyannosta. Useista työvaiheista ja käyttötoiminnan poikkeustilanteista on tehtävä jatkoanalyyseja työntekijöiden säteilysuojelun näkökulmasta.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Posiva Oy’s final disposal facility’s encapsulation plant will start to operate in the 2020s. Once the operation starts, the facility is designed to run more than a hundred years. The encapsulation plant will be first of its kind in the world, being part of the solution to solve a global issue of final disposal of nuclear waste. In the encapsulation plant’s fuel handling cell the spent nuclear fuel will be processed to be deposited into the Finnish bedrock, into ONKALO. In the fuel handling cell, the environment is highly radioactive forming a permit-required enclosed space. Remote observation is needed in order to monitor the fuel handling process. The purpose of this thesis is to map (Part I) and compare (Part II) remote observation methods to observe Posiva Oy’s fuel handling cell’s process, and provide a possible theoretical solution for this case. Secondary purpose for this thesis is to provide resources for other remote observation cases, as well as to inform about possible future technology to enable readiness in the design of the encapsulation plant. The approach was to theoretically analyze the mapped remote observation methods. Firstly, the methods were filtered by three environmental challenges. These are the high levels of radiation, the permit-required confined space and the hundred year timespan. Secondly, the most promising methods were selected by the experts designing the facility. Thirdly, a customized feasibility analysis was created and performed on the selected methods to rank the methods with scores. The results are the mapped methods and the feasibility analysis scores. The three highest scoring methods were radiation tolerant camera, fiberscope and audio feed. A combination of these three methods was given as a possible theoretical solution for this case. As this case is first in the world, remote observation methods for it had not been thoroughly researched. The findings in this thesis will act as initial data for the design of the fuel handling cell’s remote observation systems and can potentially effect on the overall design of the facility by providing unique and case specific information. In addition, this thesis could provide resources for other remote observation cases.