13 resultados para Analysis of multiple regression
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
The underlying cause of many human autoimmune diseases is unknown, but several environmental factors are implicated in triggering the self-destructive immune reactions. Multiple Sclerosis (MS) is a chronic autoimmune disease of the central nervous system, potentially leading to persistent neurological deterioration. The cause of MS is not known, and apart from immunomodulatory treatments there is no cure. In the early phase of the disease, relapsing-remitting MS (RR-MS) is characterized by unpredictable exacerbations of the neurological symptoms called relapses, which can occur at different intervals ranging from 4 weeks to several years. Microbial infections are known to be able to trigger MS relapses, and the patients are instructed to avoid all factors that might increase the risk of infections and to properly use antibiotics as well as to take care of dental hygiene. Among those environmental factors which are known to increase susceptibility to infections, high ambient air inhalable particulate matter levels affect all people within a geographical region. During the period of interest in this thesis, the occurrence of MS relapses could be effectively reduced by injections of interferon, which has immunomodulatory and antiviral properties. In this thesis, ecological and epidemiological analyses were used to study the possible connection between MS relapse occurrence, population level viral infections and air quality factors, as well as the effects of interferon medication. Hospital archive data were collected retrospectively from 1986-2001, a period in time ranging from when interferon medication first became available until just before other disease-modifying MS therapies arrived on the market. The grouped data were studied with logistic regression and intervention analysis, and individual patient data with survival analysis. Interferons proved to be effective in the treatment of MS in this observational study, as the amount of MS exacerbations was lower during interferon use as compared to the time before interferon treatment. A statistically significant temporal relationship between MS relapses and inhalable particular matter (PM10) concentrations was found in this study, which implies that MS patients are affected by the exposure to PM10. Interferon probably protected against the effect of PM10, because a significant increase in the risk of exacerbations was only observed in MS patients without interferon medication following environmental exposure to population level specific viral infections and PM10. Apart from being antiviral, interferon could thus also attenuate the enhancement of immune reactions caused by ambient air PM10. The retrospective approach utilizing carefully constructed hospital records proved to be an economical and reliable source of MS disease information for statistical analyses.
Resumo:
Abstract
Resumo:
Raw measurement data does not always immediately convey useful information, but applying mathematical statistical analysis tools into measurement data can improve the situation. Data analysis can offer benefits like acquiring meaningful insight from the dataset, basing critical decisions on the findings, and ruling out human bias through proper statistical treatment. In this thesis we analyze data from an industrial mineral processing plant with the aim of studying the possibility of forecasting the quality of the final product, given by one variable, with a model based on the other variables. For the study mathematical tools like Qlucore Omics Explorer (QOE) and Sparse Bayesian regression (SB) are used. Later on, linear regression is used to build a model based on a subset of variables that seem to have most significant weights in the SB model. The results obtained from QOE show that the variable representing the desired final product does not correlate with other variables. For SB and linear regression, the results show that both SB and linear regression models built on 1-day averaged data seriously underestimate the variance of true data, whereas the two models built on 1-month averaged data are reliable and able to explain a larger proportion of variability in the available data, making them suitable for prediction purposes. However, it is concluded that no single model can fit well the whole available dataset and therefore, it is proposed for future work to make piecewise non linear regression models if the same available dataset is used, or the plant to provide another dataset that should be collected in a more systematic fashion than the present data for further analysis.
Resumo:
Due to its non-storability, electricity must be produced at the same time that it is consumed, as a result prices are determined on an hourly basis and thus analysis becomes more challenging. Moreover, the seasonal fluctuations in demand and supply lead to a seasonal behavior of electricity spot prices. The purpose of this thesis is to seek and remove all causal effects from electricity spot prices and remain with pure prices for modeling purposes. To achieve this we use Qlucore Omics Explorer (QOE) for the visualization and the exploration of the data set and Time Series Decomposition method to estimate and extract the deterministic components from the series. To obtain the target series we use regression based on the background variables (water reservoir and temperature). The result obtained is three price series (for Sweden, Norway and System prices) with no apparent pattern.
Resumo:
This thesis considers modeling and analysis of noise and interconnects in onchip communication. Besides transistor count and speed, the capabilities of a modern design are often limited by on-chip communication links. These links typically consist of multiple interconnects that run parallel to each other for long distances between functional or memory blocks. Due to the scaling of technology, the interconnects have considerable electrical parasitics that affect their performance, power dissipation and signal integrity. Furthermore, because of electromagnetic coupling, the interconnects in the link need to be considered as an interacting group instead of as isolated signal paths. There is a need for accurate and computationally effective models in the early stages of the chip design process to assess or optimize issues affecting these interconnects. For this purpose, a set of analytical models is developed for on-chip data links in this thesis. First, a model is proposed for modeling crosstalk and intersymbol interference. The model takes into account the effects of inductance, initial states and bit sequences. Intersymbol interference is shown to affect crosstalk voltage and propagation delay depending on bus throughput and the amount of inductance. Next, a model is proposed for the switching current of a coupled bus. The model is combined with an existing model to evaluate power supply noise. The model is then applied to reduce both functional crosstalk and power supply noise caused by a bus as a trade-off with time. The proposed reduction method is shown to be effective in reducing long-range crosstalk noise. The effects of process variation on encoded signaling are then modeled. In encoded signaling, the input signals to a bus are encoded using additional signaling circuitry. The proposed model includes variation in both the signaling circuitry and in the wires to calculate the total delay variation of a bus. The model is applied to study level-encoded dual-rail and 1-of-4 signaling. In addition to regular voltage-mode and encoded voltage-mode signaling, current-mode signaling is a promising technique for global communication. A model for energy dissipation in RLC current-mode signaling is proposed in the thesis. The energy is derived separately for the driver, wire and receiver termination.
Resumo:
Multiple sclerosis (MS) is a chronic immune-mediated inflammatory disorder of the central nervous system. MS is the most common disabling central nervous system (CNS) disease of young adults in the Western world. In Finland, the prevalence of MS ranges between 1/1000 and 2/1000 in different areas. Fabry disease (FD) is a rare hereditary metabolic disease due to mutation in a single gene coding α-galactosidase A (alpha-gal A) enzyme. It leads to multi-organ pathology, including cerebrovascular disease. Currently there are 44 patients with diagnosed FD in Finland. Magnetic resonance imaging (MRI) is commonly used in the diagnostics and follow-up of these diseases. The disease activity can be demonstrated by occurrence of new or Gadolinium (Gd)-enhancing lesions in routine studies. Diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) are advanced MR sequences which can reveal pathologies in brain regions which appear normal on conventional MR images in several CNS diseases. The main focus in this study was to reveal whether whole brain apparent diffusion coefficient (ADC) analysis can be used to demonstrate MS disease activity. MS patients were investigated before and after delivery and before and after initiation of diseasemodifying treatment (DMT). In FD, DTI was used to reveal possible microstructural alterations at early timepoints when excessive signs of cerebrovascular disease are not yet visible in conventional MR sequences. Our clinical and MRI findings at 1.5T indicated that post-partum activation of the disease is an early and common phenomenon amongst mothers with MS. MRI seems to be a more sensitive method for assessing MS disease activity than the recording of relapses. However, whole brain ADC histogram analysis is of limited value in the follow-up of inflammatory conditions in a pregnancy-related setting because the pregnancy-related physiological effects on ADC overwhelm the alterations in ADC associated with MS pathology in brain tissue areas which appear normal on conventional MRI sequences. DTI reveals signs of microstructural damage in brain white matter of FD patients before excessive white matter lesion load can be observed on conventional MR scans. DTI could offer a valuable tool for monitoring the possible effects of enzyme replacement therapy in FD.
Resumo:
In this thesis, the suitability of different trackers for finger tracking in high-speed videos was studied. Tracked finger trajectories from the videos were post-processed and analysed using various filtering and smoothing methods. Position derivatives of the trajectories, speed and acceleration were extracted for the purposes of hand motion analysis. Overall, two methods, Kernelized Correlation Filters and Spatio-Temporal Context Learning tracking, performed better than the others in the tests. Both achieved high accuracy for the selected high-speed videos and also allowed real-time processing, being able to process over 500 frames per second. In addition, the results showed that different filtering methods can be applied to produce more appropriate velocity and acceleration curves calculated from the tracking data. Local Regression filtering and Unscented Kalman Smoother gave the best results in the tests. Furthermore, the results show that tracking and filtering methods are suitable for high-speed hand-tracking and trajectory-data post-processing.
Resumo:
Gear rattle is a phenomenon that occurs when idling or lightly loaded gears collide due to engine’s torque fluctuations. This behaviour is related to vibration behaviour of the transmission system. Aim of this master’s thesis is to evaluate Adams and Adams/Machinery as a simulation tools for modelling the rattle e ect in a transmission system. A case study of tractor’s power take-o driveline, suspected to be prone to rattle, is performed in this work. Modelling methods used by Adams in this type of study are presented in the theory section while simulation model build with the software during this work is presented in the results. The Machinery toolbox is used to create gears and bearings while other model components are created with standard Adams tool set. Geometries and excitations are exported from other softwares. Results were obtained from multiple variations of a base model. These result sets and literature review suggest that Adams/Machinery may not be the most suitable tool for rattle analysis. While the system behaviour was partially captured, for accurate modelling user-written routines must be used which may be more easily performed with other tools. Further research about this topic is required.
Resumo:
Avidins (Avds) are homotetrameric or homodimeric glycoproteins with typically less than 130 amino acid residues per monomer. They form a highly stable, non-covalent complex with biotin (vitamin H) with Kd = 10-15 M (for chicken Avd). The best-studied Avds are the chicken Avd from Gallus gallus and streptavidin from Streptomyces avidinii, although other Avd studies have also included Avds from various origins, e.g., from frogs, fishes, mushrooms and from many different bacteria. Several engineered Avds have been reported as well, e.g., dual-chain Avds (dcAvds) and single-chain Avds (scAvds), circular permutants with up to four simultaneously modifiable ligand-binding sites. These engineered Avds along with the many native Avds have potential to be used in various nanobiotechnological applications. In this study, we made a structure-based alignment representing all currently available sequences of Avds and studied the evolutionary relationship of Avds using phylogenetic analysis. First, we created an initial multiple sequence alignment of Avds using 42 closely related sequences, guided by the known Avd crystal structures. Next, we searched for non-redundant Avd sequences from various online databases, including National Centre for Biotechnology Information and the Universal Protein Resource; the identified sequences were added to the initial alignment to expand it to a final alignment of 242 Avd sequences. The MEGA software package was used to create distance matrices and a phylogenetic tree. Bootstrap reproducibility of the tree was poor at multiple nodes and may reflect on several possible issues with the data: the sequence length compared is relatively short and, whereas some positions are highly conserved and functional, others can vary without impinging on the structure or the function, so there are few informative sites; it may be that periods of rapid duplication have led to paralogs and that the differences among them are within the error limit of the data; and there may be other yet unknown reasons. Principle component analysis applied to alternative distance data did segregate the major groups, and success is likely due to the multivariate consideration of all the information. Furthermore, based on our extensive alignment and phylogenetic analysis, we expressed two novel Avds, lacavidin from Lactrodectus Hesperus, a western black widow spider, and hoefavidin from Hoeflea phototrophica, an aerobic marine bacterium, the ultimate aim being to determine their X-ray structures. These Avds were selected because of their unique sequences: lacavidin has an N-terminal Avd-like domain but a long C-terminal overhang, whereas hoefavidin was thought to be a dimeric Avd. Both these Avds could be used as novel scaffolds in biotechnological applications.
Resumo:
This work investigates theoretical properties of symmetric and anti-symmetric kernels. First chapters give an overview of the theory of kernels used in supervised machine learning. Central focus is on the regularized least squares algorithm, which is motivated as a problem of function reconstruction through an abstract inverse problem. Brief review of reproducing kernel Hilbert spaces shows how kernels define an implicit hypothesis space with multiple equivalent characterizations and how this space may be modified by incorporating prior knowledge. Mathematical results of the abstract inverse problem, in particular spectral properties, pseudoinverse and regularization are recollected and then specialized to kernels. Symmetric and anti-symmetric kernels are applied in relation learning problems which incorporate prior knowledge that the relation is symmetric or anti-symmetric, respectively. Theoretical properties of these kernels are proved in a draft this thesis is based on and comprehensively referenced here. These proofs show that these kernels can be guaranteed to learn only symmetric or anti-symmetric relations, and they can learn any relations relative to the original kernel modified to learn only symmetric or anti-symmetric parts. Further results prove spectral properties of these kernels, central result being a simple inequality for the the trace of the estimator, also called the effective dimension. This quantity is used in learning bounds to guarantee smaller variance.
Resumo:
TAVOITTEET: Tämän tutkielman tarkoitus on tarkastella eri toimialojen likviditeettitasoja vuosien 2007 ja 2013 välillä. Se tarkastelee myös kassanhallinnan ja likviditeetin kirjallisuutta, erilaisia likviditeettiä kuvaavia tunnuslukuja sekä asioita, joilla on vaikutusta likviditeettiin. Tämän lisäksi se tutkii informaatio ja kommunikaatio sektoria tarkemmin. DATA: Data on kerätty Orbis tietokannasta. Toimialakohtaiset keskiarvot on laskettu joko kappaleen 2 esittämillä kaavoilla tai noudettu suoraan tietokannasta. Hajonta kuvaajat on tehty Excelillä ja korrelaatio matriisi ja regressioanalyysit SAS EG:llä. TULOKSET: Tämä tutkimus esittää toimialakohtaiset keskiarvot liquidity ratiosta, solvency ratiosta sekä gearingista, kuten monista muista likviditeettiä kuvaavista tai siihen vaikuttavista tunnusluvuista. Tutkimus osoittaa, että keskimäärin likviditeetti ja maksuvalmius ovat säilyneet melko samana, mutta toimialakohtaiset muutokset ovat voimakkaita. IC sektorilla likviditeettiin vaikuttaa katetuotto, työntekijöiden määrä, liikevaihto, taseen määrä sekä maksuaika.
Resumo:
The Finnish legislation requires for a safe and secure learning environment. However, the comprehensive, risk based safety and security management (SSM) and the management commitment in the implementation and development of the SSM are not mentioned in the legislation. Multiple institutions, operators and researchers have studied and developed safety and security in educational institutions over the past decade. Typically the approach has been fragmented and without bringing up the importance of the comprehensive SSM. The development needs of the safety and security operations in universities have been studied. However, in universities of applied sciences (UASs) and in elementary schools (ESs), the performance level, strengths and weaknesses of the comprehensive SSM have not been studied. The objective of this study was to develop the comprehensive, risk based SSM of educational institutions by developing the new Asteri consultative auditing process and study its effects on auditees. Furthermore, the performance level in the comprehensive SSM in UASs and ESs were studied using Asteri and the TUTOR model developed by the Keski-Uusimaa Department for Rescue Services. In addition, strengths, development needs and differences were identified. In total, 76 educational institutions were audited between the years 2011 and 2014. The study is based on logical empiricism, and an observational applied research design was used. Auditing, observation and an electronic survey were used for data collection. Statistical analysis was used to analyze the collected information. In addition, thematic analysis was used to analyze the development areas of the organizations mentioned by the respondents in the survey. As one of the main contributions, this research presents the new Asteri consultative auditing process. Organizations with low performance levels on the audited subject benefit the most from the Asteri consultative auditing process. Asteri may be usable in many different types of audits, not only in SSM audits. As a new result, this study provides new knowledge on attitudes related to auditing. According to the research findings, auditing may generate negative attitudes and the auditor should take them into account when planning and preparing for audits. Negative attitudes can be compensated by producing added value, objectivity and positivity for the audit and, thus, improve the positive effects of auditing on knowledge and skills. Moreover, as the results of this study shows, auditing safety and security issues do not increase feelings of insecurity, but rather increase feelings of safety and security when using the new Asteri consultative auditing process with the TUTOR model. The results showed that the SSM in the audited UASs was statistically significantly more advanced than that in the audited ESs. However, there is still room for improvement in the ESs and the UASs as the approach to the SSM was fragmented. It can be assumed that the majority of Finnish UASs and ESs do not likely meet the basic level of the comprehensive, risk based the SSM.