20 resultados para Al-MCM-41. Thermogravimetry. Model free kinetics. Apparent activation energy

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Volatility has a central role in various theoretical and practical applications in financial markets. These include the applications related to portfolio theory, derivatives pricing and financial risk management. Both theoretical and practical applications require good estimates and forecasts for the asset return volatility. The goal of this study is to examine the forecast performance of one of the more recent volatility measures, model-free implied volatility. Model-free implied volatility is extracted from the prices in the option markets, and it aims to provide an unbiased estimate for the market’s expectation on the future level of volatility. Since it is extracted from the option prices, model-free implied volatility should contain all the relevant information that the market participants have. Moreover, model-free implied volatility requires less restrictive assumptions than the commonly used Black-Scholes implied volatility, which means that it should be less biased estimate for the market’s expectations. Therefore, it should also be a better forecast for the future volatility. The forecast performance of model-free implied volatility is evaluated by comparing it to the forecast performance of Black-Scholes implied volatility and GARCH(1,1) forecast. Weekly forecasts for six years period were calculated for the forecasted variable, German stock market index DAX. The data consisted of price observations for DAX index options. The forecast performance was measured using econometric methods, which aimed to capture the biasedness, accuracy and the information content of the forecasts. The results of the study suggest that the forecast performance of model-free implied volatility is superior to forecast performance of GARCH(1,1) forecast. However, the results also suggest that the forecast performance of model-free implied volatility is not as good as the forecast performance of Black-Scholes implied volatility, which is against the hypotheses based on theory. The results of this study are consistent with the majority of prior research on the subject.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computational fluid dynamics (CFD) modeling is an important tool in designing new combustion systems. By using CFD modeling, entire combustion systems can be modeled and the emissions and the performance can be predicted. CFD modeling can also be used to develop new and better combustion systems from an economical and environmental point of view. In CFD modeling of solid fuel combustion, the combustible fuel is generally treated as single fuel particles. One of the limitations with the CFD modeling concerns the sub-models describing the combustion of single fuel particles. Available models in the scientific literature are in many cases not suitable as submodels for CFD modeling since they depend on a large number of input parameters and are computationally heavy. In this thesis CFD-applicable models are developed for the combustion of single fuel particles. The single particle models can be used to improve the combustion performance in various combustion devices or develop completely new technologies. The investigated fields are oxidation of carbon (C) and nitrogen (N) in char residues from solid fuels. Modeled char-C oxidation rates are compared to experimental oxidation rates for a large number of pulverized solid fuel chars under relevant combustion conditions. The experiments have been performed in an isothermal plug flow reactor operating at 1123-1673 K and 3-15 vol.% O2. In the single particle model, the char oxidation is based on apparent kinetics and depends on three fuel specific parameters: apparent pre-exponential factor, apparent activation energy, and apparent reaction order. The single particle model can be incorporated as a sub-model into a CFD code. The results show that the modeled char oxidation rates are in good agreement with experimental char oxidation rates up to around 70% of burnout. Moreover, the results show that the activation energy and the reaction order can be assumed to be constant for a large number of bituminous coal chars under conditions limited by the combined effects of chemical kinetics and pore diffusion. Based on this, a new model based on only one fuel specific parameter is developed (Paper III). The results also show that reaction orders of bituminous coal chars and anthracite chars differ under similar conditions (Paper I and Paper II); reaction orders of bituminous coal chars were found to be one, while reaction orders of anthracite chars were determined to be zero. This difference in reaction orders has not previously been observed in the literature and should be considered in future char oxidation models. One of the most frequently used comprehensive char oxidation models could not explain the difference in the reaction orders. In the thesis (Paper II), a modification to the model is suggested in order to explain the difference in reaction orders between anthracite chars and bituminous coal chars. Two single particle models are also developed for the NO formation and reduction during the oxidation of single biomass char particles. In the models the char-N is assumed to be oxidized to NO and the NO is partly reduced inside the particle. The first model (Paper IV) is based on the concentration gradients of NO inside and outside the particle and the second model is simplified to such an extent that it is based on apparent kinetics and can be incorporated as a sub-model into a CFD code (Paper V). Modeled NO release rates from both models were in good agreement with experimental measurements from a single particle reactor of quartz glass operating at 1173-1323 K and 3-19 vol.% O2. In the future, the models can be used to reduce NO emissions in new combustion systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Methyl chloride is an important chemical intermediate with a variety of applications. It is produced today in large units and shipped to the endusers. Most of the derived products are harmless, as silicones, butyl rubber and methyl cellulose. However, methyl chloride is highly toxic and flammable. On-site production in the required quantities is desirable to reduce the risks involved in transportation and storage. Ethyl chloride is a smaller-scale chemical intermediate that is mainly used in the production of cellulose derivatives. Thus, the combination of onsite production of methyl and ethyl chloride is attractive for the cellulose processing industry, e.g. current and future biorefineries. Both alkyl chlorides can be produced by hydrochlorination of the corresponding alcohol, ethanol or methanol. Microreactors are attractive for the on-site production as the reactions are very fast and involve toxic chemicals. In microreactors, the diffusion limitations can be suppressed and the process safety can be improved. The modular setup of microreactors is flexible to adjust the production capacity as needed. Although methyl and ethyl chloride are important chemical intermediates, the literature available on potential catalysts and reaction kinetics is limited. Thus the thesis includes an extensive catalyst screening and characterization, along with kinetic studies and engineering the hydrochlorination process in microreactors. A range of zeolite and alumina based catalysts, neat and impregnated with ZnCl2, were screened for the methanol hydrochlorination. The influence of zinc loading, support, zinc precursor and pH was investigated. The catalysts were characterized with FTIR, TEM, XPS, nitrogen physisorption, XRD and EDX to identify the relationship between the catalyst characteristics and the activity and selectivity in the methyl chloride synthesis. The acidic properties of the catalyst were strongly influenced upon the ZnCl2 modification. In both cases, alumina and zeolite supports, zinc reacted to a certain amount with specific surface sites, which resulted in a decrease of strong and medium Brønsted and Lewis acid sites and the formation of zinc-based weak Lewis acid sites. The latter are highly active and selective in methanol hydrochlorination. Along with the molecular zinc sites, bulk zinc species are present on the support material. Zinc modified zeolite catalysts exhibited the highest activity also at low temperatures (ca 200 °C), however, showing deactivation with time-onstream. Zn/H-ZSM-5 zeolite catalysts had a higher stability than ZnCl2 modified H-Beta and they could be regenerated by burning the coke in air at 400 °C. Neat alumina and zinc modified alumina catalysts were active and selective at 300 °C and higher temperatures. However, zeolite catalysts can be suitable for methyl chloride synthesis at lower temperatures, i.e. 200 °C. Neat γ-alumina was found to be the most stable catalyst when coated in a microreactor channel and it was thus used as the catalyst for systematic kinetic studies in the microreactor. A binder-free and reproducible catalyst coating technique was developed. The uniformity, thickness and stability of the coatings were extensively characterized by SEM, confocal microscopy and EDX analysis. A stable coating could be obtained by thermally pretreating the microreactor platelets and ball milling the alumina to obtain a small particle size. Slurry aging and slow drying improved the coating uniformity. Methyl chloride synthesis from methanol and hydrochloric acid was performed in an alumina-coated microreactor. Conversions from 4% to 83% were achieved in the investigated temperature range of 280-340 °C. This demonstrated that the reaction is fast enough to be successfully performed in a microreactor system. The performance of the microreactor was compared with a tubular fixed bed reactor. The results obtained with both reactors were comparable, but the microreactor allows a rapid catalytic screening with low consumption of chemicals. As a complete conversion of methanol could not be reached in a single microreactor, a second microreactor was coupled in series. A maximum conversion of 97.6 % and a selectivity of 98.8 % were reached at 340°C, which is close to the calculated values at a thermodynamic equilibrium. A kinetic model based on kinetic experiments and thermodynamic calculations was developed. The model was based on a Langmuir Hinshelwood-type mechanism and a plug flow model for the microreactor. The influence of the reactant adsorption on the catalyst surface was investigated by performing transient experiments and comparing different kinetic models. The obtained activation energy for methyl chloride was ca. two fold higher than the previously published, indicating diffusion limitations in the previous studies. A detailed modeling of the diffusion in the porous catalyst layer revealed that severe diffusion limitations occur starting from catalyst coating thicknesses of 50 μm. At a catalyst coating thickness of ca 15 μm as in the microreactor, the conditions of intrinsic kinetics prevail. Ethanol hydrochlorination was performed successfully in the microreactor system. The reaction temperature was 240-340°C. An almost complete conversion of ethanol was achieved at 340°C. The product distribution was broader than for methanol hydrochlorination. Ethylene, diethyl ether and acetaldehyde were detected as by-products, ethylene being the most dominant by-product. A kinetic model including a thorough thermodynamic analysis was developed and the influence of adsorbed HCl on the reaction rate of ethanol dehydration reactions was demonstrated. The separation of methyl chloride using condensers was investigated. The proposed microreactor-condenser concept enables the production of methyl chloride with a high purity of 99%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Suomessa sähkönjakeluverkkoyhtiöt toimivat verkkovastuualueillaan yksinoikeudella. Verkkovastuualuiden ominaispiirteet voivat olla hyvin erilaiset. Energiamarkkinavirasto valvoo sähkömarkkinalainsäädännön noudattamista jakeluverkkotoiminnassa. Jakeluverkonhaltijat on velvoitettu Energiamarkkinaviraston valvontamallin kautta määrittämään tiettyjen rajoitusten mukaisesti verkkokomponenteillensa sopivimmat teknistaloudelliset pitoajat. Nämä pitoajat vaikuttavat varsinkin verkkoyhtiön tuottomahdollisuuksiin ja asiakkaiden siirtohintoihin. Lisäksi huomioon on otettava jaettavan sähkön laatu, verkon käyttövarmuus sekä vaikutukset ympäristöön ja turvallisuuteen. Pitoaikojen matemaattinen mallintaminen on usein monimutkaista. Teknistaloudellinen pitoaika valitaankin monesti kokemuksen ja harkinnan perusteella. Tärkeimmät reunaehdot jakeluverkkokomponenttien teknistaloudellisten pitoaikojen valinnalle muodostavat verkkovastuualueen sähkönkulutuksen kasvun sekä infrastruktuurin muutoksen nopeudet. Hitaan muutoksen alueilla verkkokomponenttien teknistaloudelliset pitoajat lähenevät teknisiä pitoaikoja, joihin vaikuttavat voimakkaasti verkkovastuualueen maantieteelliset ja ilmastolliset ominaispiirteet. Yhtiöittäin vaihtelevat verkon rakennus- ja ylläpitomenetelmät tulee myös huomioida. Tässä diplomityössä keskitytään pääosin sähkönjakeluverkon komponenttien teknistaloudelliseen pitoaikaan verkon ja verkkovastuualueen ominaispiirteiden kautta. Aluksi määritellään jakeluverkon pitoaika usealla eri tavalla, sekä selvitetään pitoajan merkitystä nykytilanteessa. Lisäksi työn alkuosassa esitellään Energiamarkkinaviraston vuoden 2005 alusta käyttöönotettu jakeluverkkotoiminnan hinnoittelun kohtuullisuuden valvontamalli ja käydään läpi teknistaloudellisen pitoajan merkitys siinä. Sen jälkeen tarkastellaan jakeluverkkokomponenttien ja niiden osien tekniseen pitoaikaan vaikuttavia tekijöitä. Erityisesti puupylväisiin ja niihin liittyviin ajankohtaisiin asioihin kiinnitetään huomiota, koska puupylväät määräävät monesti koko ilmajohtorakenteen uusimisajankohdan. Lisäksi suolakyllästeiselle puupylväälle esitetään yleinen rappeutumismalli ja jakelumuuntajan rappeutumistapahtumaa tutkitaan. Lopuksi tarkastellaan Graninge Kainuu Oy:tä jakeluverkonhaltijana sekä määritetään sen verkkovastuualueelle ominaisia komponenttien teknisiä ja teknistaloudellisia pitoaikoja haastattelujen, tuoreimpien lähteiden, tutkimustulosten, vertailun ja harkinnan avulla.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tutkimuksen tarkoituksena oli tutkia tilaaja–tuottaja-mallin soveltuvuutta Lappeenrannan Energia Oy:n käyttöön ja muodostaa tämän jälkeen yhtiölle malliehdotus. Tätä varten oli tutustuttava aluksi yhtiön nykyisiin prosesseihin. Tämän jälkeen voitiin vasta alkaa muuttamaan prosesseja tilaaja–tuottaja-mallin käyttöä vastaaviksi. Työn viitekehys muodostui tilaaja–tuottaja-mallista yleisesti, prosessien hallinnasta ja hinnoittelusta. Tutkimusaineisto koostui haastatteluista, joita tehtiin viiteen energia-alan yritykseen. Haastattelut laadittiin asiaa käsittelevän kirjallisuuden avulla. Lappeenrannan Energia Oy:lle rakennettu malliehdotus perustuu pääosin juuri haastatteluissa saatuihin tietoihin induktiivisen analyysin perusteella. Aineiston analyysin perusteella yhtiölle valittiin mallin toteutustapa ja tehtiin käyttöönottosuunnitelma. Tämän jälkeen määriteltiin tilaaja ja tuottaja sekä selvitettiin osapuolten vastuunjako. Työssä on käsitelty myös mallin toteutuksen vaatimia muutoksia yhtiössä ja annettu suosituksia kilpailuttamiseen ja valvontaan. Jokainen haastattelu toi uutta tietoa ja toisaalta vahvisti jo ilmi tulleita tietoja. Suuremman haastattelujoukon kautta toteutustapoja olisi voinut löytyä vielä lisää. Tämän työn puitteissa aineisto koettiin kuitenkin riittävän luotettavaksi ja kattavaksi Lappeenrannan Energia Oy:n sovellusta varten.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The general striving to bring down the number of municipal landfills and to increase the reuse and recycling of waste-derived materials across the EU supports the debates concerning the feasibility and rationality of waste management systems. Substantial decrease in the volume and mass of landfill-disposed waste flows can be achieved by directing suitable waste fractions to energy recovery. Global fossil energy supplies are becoming more and more valuable and expensive energy sources for the mankind, and efforts to save fossil fuels have been made. Waste-derived fuels offer one potential partial solution to two different problems. First, waste that cannot be feasibly re-used or recycled is utilized in the energy conversion process according to EU’s Waste Hierarchy. Second, fossil fuels can be saved for other purposes than energy, mainly as transport fuels. This thesis presents the principles of assessing the most sustainable system solution for an integrated municipal waste management and energy system. The assessment process includes: · formation of a SISMan (Simple Integrated System Management) model of an integrated system including mass, energy and financial flows, and · formation of a MEFLO (Mass, Energy, Financial, Legislational, Other decisionsupport data) decision matrix according to the selected decision criteria, including essential and optional decision criteria. The methods are described and theoretical examples of the utilization of the methods are presented in the thesis. The assessment process involves the selection of different system alternatives (process alternatives for treatment of different waste fractions) and comparison between the alternatives. The first of the two novelty values of the utilization of the presented methods is the perspective selected for the formation of the SISMan model. Normally waste management and energy systems are operated separately according to the targets and principles set for each system. In the thesis the waste management and energy supply systems are considered as one larger integrated system with one primary target of serving the customers, i.e. citizens, as efficiently as possible in the spirit of sustainable development, including the following requirements: · reasonable overall costs, including waste management costs and energy costs; · minimum environmental burdens caused by the integrated waste management and energy system, taking into account the requirement above; and · social acceptance of the selected waste treatment and energy production methods. The integrated waste management and energy system is described by forming a SISMan model including three different flows of the system: energy, mass and financial flows. By defining the three types of flows for an integrated system, the selected factor results needed in the decision-making process of the selection of waste management treatment processes for different waste fractions can be calculated. The model and its results form a transparent description of the integrated system under discussion. The MEFLO decision matrix has been formed from the results of the SISMan model, combined with additional data, including e.g. environmental restrictions and regional aspects. System alternatives which do not meet the requirements set by legislation can be deleted from the comparisons before any closer numerical considerations. The second novelty value of this thesis is the three-level ranking method for combining the factor results of the MEFLO decision matrix. As a result of the MEFLO decision matrix, a transparent ranking of different system alternatives, including selection of treatment processes for different waste fractions, is achieved. SISMan and MEFLO are methods meant to be utilized in municipal decision-making processes concerning waste management and energy supply as simple, transparent and easyto- understand tools. The methods can be utilized in the assessment of existing systems, and particularly in the planning processes of future regional integrated systems. The principles of SISMan and MEFLO can be utilized also in other environments, where synergies of integrating two (or more) systems can be obtained. The SISMan flow model and the MEFLO decision matrix can be formed with or without any applicable commercial or free-of-charge tool/software. SISMan and MEFLO are not bound to any libraries or data-bases including process information, such as different emission data libraries utilized in life cycle assessments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis examines the performance persistence of hedge funds using complement methodologies (namely cross-sectional regressions, quantile portfolio analysis and Spearman rank correlation test). In addition, six performance ranking metrics and six different combinations of selection and holding periods are compared. The data is gathered from HFI and Tremont databases covering over 14,000 hedge funds and time horizon is set from January 1996 to December 2007. The results suggest that there definitely exists performance persistence among hedge funds and the strength and existence of persistence vary among fund styles. The persistence depends on the metrics and combination of selection and prediction period applied. According to the results, the combination of 36-month selection and holding period outperforms other five period combinations in capturing performance persistence within the sample. Furthermore, model-free performance metrics capture persistence more sensitively than model-specific metrics. The study is the first one ever to use MVR as a performance ranking metric, and surprisingly MVR is more sensitive to detect persistence than other performance metrics employed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis presents a one-dimensional, semi-empirical dynamic model for the simulation and analysis of a calcium looping process for post-combustion CO2 capture. Reduction of greenhouse emissions from fossil fuel power production requires rapid actions including the development of efficient carbon capture and sequestration technologies. The development of new carbon capture technologies can be expedited by using modelling tools. Techno-economical evaluation of new capture processes can be done quickly and cost-effectively with computational models before building expensive pilot plants. Post-combustion calcium looping is a developing carbon capture process which utilizes fluidized bed technology with lime as a sorbent. The main objective of this work was to analyse the technological feasibility of the calcium looping process at different scales with a computational model. A one-dimensional dynamic model was applied to the calcium looping process, simulating the behaviour of the interconnected circulating fluidized bed reactors. The model incorporates fundamental mass and energy balance solvers to semi-empirical models describing solid behaviour in a circulating fluidized bed and chemical reactions occurring in the calcium loop. In addition, fluidized bed combustion, heat transfer and core-wall layer effects were modelled. The calcium looping model framework was successfully applied to a 30 kWth laboratory scale and a pilot scale unit 1.7 MWth and used to design a conceptual 250 MWth industrial scale unit. Valuable information was gathered from the behaviour of a small scale laboratory device. In addition, the interconnected behaviour of pilot plant reactors and the effect of solid fluidization on the thermal and carbon dioxide balances of the system were analysed. The scale-up study provided practical information on the thermal design of an industrial sized unit, selection of particle size and operability in different load scenarios.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Terpenes are a valuable natural resource for the production of fine chemicals. Turpentine, obtained from biomass and also as a side product of softwood industry, is rich in monoterpenes such as α-pinene and β-pinene, which are widely used as raw materials in the synthesis of flavors, fragrances and pharmaceutical compounds. The rearrangement of their epoxides has been thoroughly studied in recent years, as a method to obtain compounds which are further used in the fine chemical industry. The industrially most desired products of α-pinene oxide isomerization are campholenic aldehyde and trans-carveol. Campholenic aldehyde is an intermediate for the manufacture of sandalwood-like fragrances such as santalol. Trans-carveol is an expensive constituent of the Valencia orange essence oil used in perfume bases and food flavor composition. Furthermore it has been found to exhibit chemoprevention of mammary carcinogenesis. A wide range of iron and ceria supported catalysts were prepared, characterized and tested for α-pinene oxide isomerization in order to selective synthesis of above mentioned products. The highest catalytic activity in the preparation of campholenic aldehyde over iron modified catalysts using toluene as a solvent at 70 °C (total conversion of α-pinene oxide with a selectivity of 66 % to the desired aldehyde) was achieved in the presence of Fe-MCM-41. Furthermore, Fe-MCM-41 catalyst was successfully regenerated without deterioration of catalytic activity and selectivity. The most active catalysts in the synthesis of trans-carveol from α-pinene oxide over iron and ceria modified catalysts in N,N-dimethylacetamide as a solvent at 140 °C (total conversion of α-pinene oxide with selectivity 43 % to trans-carveol) were Fe-Beta-300 and Ce-Si-MCM-41. These catalysts were further tested for an analogous reaction, namely verbenol oxide isomerization. Verbenone is another natural organic compound which can be found in a variety of plants or synthesized by allylic oxidation of α-pinene. An interesting product which is synthesized from verbenone is (1R,2R,6S)-3-methyl-6-(prop-1-en-2-yl)cyclohex-3-ene-1,2-diol. It has been discovered that this diol possesses potent anti-Parkinson activity. The most effective way leading to desired diol starts from verbenone and includes three stages: epoxidation of verbenone to verbenone oxide, reduction of verbenone oxide and subsequent isomerization of obtained verbenol oxide, which is analogous to isomerization of α-pinene oxide. In the research focused on the last step of these synthesis, high selectivity (82 %) to desired diol was achieved in the isomerization of verbenol oxide at a conversion level of 96 % in N,N-dimethylacetamide at 140 °C using iron modified zeolite, Fe-Beta-300. This reaction displayed surprisingly high selectivity, which has not been achieved yet. The possibility of the reuse of heterogeneous catalysts without activity loss was demonstrated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tämä kandidaatintyö tarkastelee rakeisen materiaalin seulontaan liittyviä käsitteitä ja laitteita, etsii optimaalisia parametreja seulonnan erotustehokkuudelle laboratorio-olosuhteissa sekä verifioi aikaisempien tutkimuksien simulointimallia. Mittauksessa seulottiin erikokoisia lasipalloja. Mittausten muuttuvia parametreja olivat seulatason värähtelyn taajuus, kaltevuus ja syöttömassa. Värähtely edistää partikkelien kerrostumista, kaltevuus lisää partikkelien vierintänopeutta ja syöttömassan lisääminen tarkoittaa suurempaa kapasiteettia. Mittausten perusteella värähtelyn ja kaltevuuden lisääminen parantaa erotustehokkuutta. Sen sijaan liiallinen kaltevuuden ja syöttömassan lisääminen heikentää erotustehokkuutta. Seulonnan erotustehokkuudet määritettiin alitteiden kokonaismassan perusteella. Tässä työssä kokeellisesti määritettyjä erotustehokkuuden arvoja verrattiin Rotich et al. [2013, 2014] kehittämän seulan simulointimallin tuloksiin. Malli simuloi seulan erotustehokkuutta eri seulan parametreilla ja mallin antamat simulointitulokset noudattivat hyvin tässä työssä saatuja kokeellisia mittaustuloksia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon dioxide is regarded, nowadays, as a primary anthropogenic greenhouse gas leading to global warming. Hence, chemical fixation of CO2 has attracted much attention as a possible way to manufacture useful chemicals. One of the most interesting approaches of CO2 transformations is the synthesis of organic carbonates. Since conventional production technologies of these compounds involve poisonous phosgene and carbon monoxide, there is a need to develop novel synthetic methods that would better match the principles of "Green Chemistry" towards protection of the environment and human health. Over the years, synthesis of dimethyl carbonate was under intensive investigation in the academia and industry. Therefore, this study was entirely directed towards equally important homologue of carbonic esters family namely diethyl carbonate (DEC). Novel synthesis method of DEC starting from ethanol and CO2 over heterogeneous catalysts based on ceria (CeO2) was studied in the batch reactor. However, the plausible drawback of the reaction is thermodynamic limitations. The calculated values revealed that the reaction is exothermic (ΔrHØ298K = ─ 16.6 J/ ) and does not occur spontaneously at rooms temperature (ΔrGØ 298K = 35.85 kJ/mol). Moreover, co-produced water easily shifts the reaction equilibrium towards reactants excluding achievement of high yields of the carbonate. Therefore, in-situ dehydration has been applied using butylene oxide as a chemical water trap. A 9-fold enhancement in the amount of DEC was observed upon introduction of butylene oxide to the reaction media in comparison to the synthetic method without any water removal. This result confirms that reaction equilibrium was shifted in favour of the desired product and thermodynamic boundaries of the reaction were suppressed by using butylene oxide as a water scavenger. In order to obtain insight into the reaction network, the kinetic experiments were performed over commercial cerium oxide. On the basis of the selectivity/conversion profile it could be concluded that the one-pot synthesis of diethyl carbonate from ethanol, CO2 and butylene oxide occurs via a consecutive route involving cyclic carbonate as an intermediate. Since commercial cerium oxide suffers from the deactivation problems already after first reaction cycle, in-house CeO2 was prepared applying room temperature precipitation technique. Variation of the synthesis parameters such as synthesis time, calcination temperature and pH of the reaction solution turned to have considerable influence on the physico-chemical and catalytic properties of CeO2. The increase of the synthesis time resulted in high specific surface area of cerium oxide and catalyst prepared within 50 h exhibited the highest amount of basic sites on its surface. Furthermore, synthesis under pH 11 yielded cerium oxide with the highest specific surface area, 139 m2/g, among all prepared catalysts. Moreover, CeO2─pH11 catalyst demonstrated the best catalytic activity and 2 mmol of DEC was produced at 180 oC and 9 MPa of the final reaction pressure. In addition, ceria-supported onto high specific surface area silicas MCM-41, SBA-15 and silica gel were synthesized and tested for the first time as catalysts in the synthesis of DEC. Deposition of cerium oxide on MCM-41 and SiO2 supports resulted in a substantial increase of the alkalinity of the carrier materials. Hexagonal SBA-15 modified with 20 wt % of ceria exhibited the second highest basicity in the series of supported catalysts. Evaluation of the catalytic activity of ceria-supported catalysts showed that reaction carried out over 20 wt % CeO2-SBA-15 generated the highest amount of DEC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Object detection is a fundamental task of computer vision that is utilized as a core part in a number of industrial and scientific applications, for example, in robotics, where objects need to be correctly detected and localized prior to being grasped and manipulated. Existing object detectors vary in (i) the amount of supervision they need for training, (ii) the type of a learning method adopted (generative or discriminative) and (iii) the amount of spatial information used in the object model (model-free, using no spatial information in the object model, or model-based, with the explicit spatial model of an object). Although some existing methods report good performance in the detection of certain objects, the results tend to be application specific and no universal method has been found that clearly outperforms all others in all areas. This work proposes a novel generative part-based object detector. The generative learning procedure of the developed method allows learning from positive examples only. The detector is based on finding semantically meaningful parts of the object (i.e. a part detector) that can provide additional information to object location, for example, pose. The object class model, i.e. the appearance of the object parts and their spatial variance, constellation, is explicitly modelled in a fully probabilistic manner. The appearance is based on bio-inspired complex-valued Gabor features that are transformed to part probabilities by an unsupervised Gaussian Mixture Model (GMM). The proposed novel randomized GMM enables learning from only a few training examples. The probabilistic spatial model of the part configurations is constructed with a mixture of 2D Gaussians. The appearance of the parts of the object is learned in an object canonical space that removes geometric variations from the part appearance model. Robustness to pose variations is achieved by object pose quantization, which is more efficient than previously used scale and orientation shifts in the Gabor feature space. Performance of the resulting generative object detector is characterized by high recall with low precision, i.e. the generative detector produces large number of false positive detections. Thus a discriminative classifier is used to prune false positive candidate detections produced by the generative detector improving its precision while keeping high recall. Using only a small number of positive examples, the developed object detector performs comparably to state-of-the-art discriminative methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The share of variable renewable energy in electricity generation has seen exponential growth during the recent decades, and due to the heightened pursuit of environmental targets, the trend is to continue with increased pace. The two most important resources, wind and insolation both bear the burden of intermittency, creating a need for regulation and posing a threat to grid stability. One possibility to deal with the imbalance between demand and generation is to store electricity temporarily, which was addressed in this thesis by implementing a dynamic model of adiabatic compressed air energy storage (CAES) with Apros dynamic simulation software. Based on literature review, the existing models due to their simplifications were found insufficient for studying transient situations, and despite of its importance, the investigation of part load operation has not yet been possible with satisfactory precision. As a key result of the thesis, the cycle efficiency at design point was simulated to be 58.7%, which correlated well with literature information, and was validated through analytical calculations. The performance at part load was validated against models shown in literature, showing good correlation. By introducing wind resource and electricity demand data to the model, grid operation of CAES was studied. In order to enable the dynamic operation, start-up and shutdown sequences were approximated in dynamic environment, as far as is known, the first time, and a user component for compressor variable guide vanes (VGV) was implemented. Even in the current state, the modularly designed model offers a framework for numerous studies. The validity of the model is limited by the accuracy of VGV correlations at part load, and in addition the implementation of heat losses to the thermal energy storage is necessary to enable longer simulations. More extended use of forecasts is one of the important targets of development, if the system operation is to be optimised in future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Työn tavoitteena oli pienentää kuorinnassa syntyviä puuhäviöitä ja parantaa linjan käytettävyyttä nykyaikaisella puunkuorimolla. Tavoitteet toteutettiin automaatiojärjestelmään tehdyillä muutoksilla. Rumpukuorintaprosessi on säilynyt pitkään samanlaisena. Viime vuosina on markkinoille tullut uusia älykkäitä mittalaitteita ja optimointiin kykeneviä säätöjärjestelmiä. Uudenlaisella automaatiotekniikalla on mahdollista mitata kuorintatulosta ja kuorinnassa syntyneitä puuhäviöitä reaaliaikaisesti. Laaduntarkkailun lisäksi tietoja hyödynnetään kuorintaprosessin automaattisessa ohjauksessa. Optimaalisen kuorintatuloksen saavuttaminen edellyttää virheetöntä automaation toimintaa ja tarkkaa viritystä säädöiltä. Työssä perehdyttiin kuorimon perusautomaatioon ja ylemmän tason säädön toimintaan. Prosessinohjauksessa havaitut ongelmakohdat korjattiin. Lopputuloksena saatiin vakiokuorintatehon malli, joka pienentää puuhäviöitä ja parantaa linjaston käytettävyyttä. Saaduilla tuloksilla on merkittävä taloudellinen arvo, ja menetelmät ovat hyödynnettävissä myös toisilla rumpukuorimoilla.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis is studied the influence of uniaxial deformation of GaAs/AlGaAs quantum well structures to photoluminescence. Uniaxial deformation was applied along [110] and polarization ratio of photoluminescence at T = 77 K and 300 K was measured. Also the physical origin of photoluminescence lines in spectrum was determined and the energy band splitting value between states of heavy and light holes was estimated. It was found that the dependencies of polarization ratio on uniaxial deformation for bulk GaAs and GaAs/AlGaAs are different. Two observed lines in photoluminescence spectrum are induced by free electron recombination to energy sublevels of valence band corresponding to heavy and light holes. Those sublevels are splited due to the combination of size quantization and external pressure. The quantum splitting energy value was estimated. Also was shown a method, which allows to determine the energy splitting value of sublevels at room temperature and at comparatively low uniaxial deformation, when the other method for determining of the splitting becomes impossible.