74 resultados para Adaptive Image Binarization
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Since the introduction of automatic orbital welding in pipeline application in 1961, significant improvements have been obtained in orbital pipe welding systems. Requirement of more productive welding systems for pipeline application forces manufacturers to innovate new advanced systems and welding processes for orbital welding method. Various methods have been used to make welding process adaptive, such as visual sensing, passive visual sensing, real-time intelligent control, scan welding technique, multi laser vision sensor, thermal scanning, adaptive image processing, neural network model, machine vision, and optical sensing. Numerous studies are reviewed and discussed in this Master’s thesis and based on a wide range of experiments which already have been accomplished by different researches the vision sensor are reported to be the best choice for adaptive orbital pipe welding system. Also, in this study the most welding processes as well as the most pipe variations welded by orbital welding systems mainly for oil and gas pipeline applications are explained. The welding results show that Gas Metal Arc Welding (GMAW) and its variants like Surface Tension Transfer (STT) and modified short circuit are the most preferred processes in the welding of root pass and can be replaced to the Gas Tungsten Arc Welding (GTAW) in many applications. Furthermore, dual-tandem gas metal arc welding technique is currently considered the most efficient method in the welding of fill pass. Orbital GTAW process mostly is applied for applications ranging from single run welding of thin walled stainless tubes to multi run welding of thick walled pipes. Flux cored arc welding process is faster process with higher deposition rate and recently this process is getting more popular in pipe welding applications. Also, combination of gas metal arc welding and Nd:YAG laser has shown acceptable results in girth welding of land pipelines for oil and gas industry. This Master’s thesis can be implemented as a guideline in welding of pipes and tubes to achieve higher quality and efficiency. Also, this research can be used as a base material for future investigations to supplement present finding.
Resumo:
Superheater corrosion causes vast annual losses for the power companies. With a reliable corrosion prediction method, the plants can be designed accordingly, and knowledge of fuel selection and determination of process conditions may be utilized to minimize superheater corrosion. Growing interest to use recycled fuels creates additional demands for the prediction of corrosion potential. Models depending on corrosion theories will fail, if relations between the inputs and the output are poorly known. A prediction model based on fuzzy logic and an artificial neural network is able to improve its performance as the amount of data increases. The corrosion rate of a superheater material can most reliably be detected with a test done in a test combustor or in a commercial boiler. The steel samples can be located in a special, temperature-controlled probe, and exposed to the corrosive environment for a desired time. These tests give information about the average corrosion potential in that environment. Samples may also be cut from superheaters during shutdowns. The analysis ofsamples taken from probes or superheaters after exposure to corrosive environment is a demanding task: if the corrosive contaminants can be reliably analyzed, the corrosion chemistry can be determined, and an estimate of the material lifetime can be given. In cases where the reason for corrosion is not clear, the determination of the corrosion chemistry and the lifetime estimation is more demanding. In order to provide a laboratory tool for the analysis and prediction, a newapproach was chosen. During this study, the following tools were generated: · Amodel for the prediction of superheater fireside corrosion, based on fuzzy logic and an artificial neural network, build upon a corrosion database developed offuel and bed material analyses, and measured corrosion data. The developed model predicts superheater corrosion with high accuracy at the early stages of a project. · An adaptive corrosion analysis tool based on image analysis, constructedas an expert system. This system utilizes implementation of user-defined algorithms, which allows the development of an artificially intelligent system for thetask. According to the results of the analyses, several new rules were developed for the determination of the degree and type of corrosion. By combining these two tools, a user-friendly expert system for the prediction and analyses of superheater fireside corrosion was developed. This tool may also be used for the minimization of corrosion risks by the design of fluidized bed boilers.
Resumo:
Summary
Resumo:
Selostus: Tasoskannerin ja digitaalisen kuva-analyysimenetelmän kalibrointi juurten morfologian kvantifioimiseksi
Resumo:
Abstract
Resumo:
Abstract
Resumo:
Abstract
Resumo:
Image filtering is a highly demanded approach of image enhancement in digital imaging systems design. It is widely used in television and camera design technologies to improve the quality of an output image to avoid various problems such as image blurring problem thatgains importance in design of displays of large sizes and design of digital cameras. This thesis proposes a new image filtering method basedon visual characteristics of human eye such as MTF. In contrast to the traditional filtering methods based on human visual characteristics this thesis takes into account the anisotropy of the human eye vision. The proposed method is based on laboratory measurements of the human eye MTF and takes into account degradation of the image by the latter. This method improves an image in the way it will be degraded by human eye MTF to give perception of the original image quality. This thesis gives a basic understanding of an image filtering approach and the concept of MTF and describes an algorithm to perform an image enhancement based on MTF of human eye. Performed experiments have shown quite good results according to human evaluation. Suggestions to improve the algorithm are also given for the future improvements.
Resumo:
The topic of this thesis is studying how lesions in retina caused by diabetic retinopathy can be detected from color fundus images by using machine vision methods. Methods for equalizing uneven illumination in fundus images, detecting regions of poor image quality due toinadequate illumination, and recognizing abnormal lesions were developed duringthe work. The developed methods exploit mainly the color information and simpleshape features to detect lesions. In addition, a graphical tool for collecting lesion data was developed. The tool was used by an ophthalmologist who marked lesions in the images to help method development and evaluation. The tool is a general purpose one, and thus it is possible to reuse the tool in similar projects.The developed methods were tested with a separate test set of 128 color fundus images. From test results it was calculated how accurately methods classify abnormal funduses as abnormal (sensitivity) and healthy funduses as normal (specificity). The sensitivity values were 92% for hemorrhages, 73% for red small dots (microaneurysms and small hemorrhages), and 77% for exudates (hard and soft exudates). The specificity values were 75% for hemorrhages, 70% for red small dots, and 50% for exudates. Thus, the developed methods detected hemorrhages accurately and microaneurysms and exudates moderately.
Resumo:
Tämän tutkimuksen tavoitteena oli selvittää, vaikuttaako kansainvälisen opiskelijan kulttuuritausta opiskelijan odotetun ja koetun yliopistoimagon muodostumiseen. Jotta kulttuurin vaikutuksia yliopistoimagoon voitiin tutkia, tutkimuksessa tunnistettiin yliopistoimagon muodostumiseen oleellisesti vaikuttavat tekijät. Kulttuurin roolia organisaation imagon muodostumisessa ei ole tutkittu aiemmissa tieteellisissä julkaisuissa. Näin ollen tämän tutkimuksen voidaan katsoa edistäneen nykyistä imagotutkimusta. Tutkimuksen kohdeyliopistona oli Lappeenrannan teknillinen yliopisto (LTY). Tutkimuksen empiirinen osa toteutettiin kvantitatiivisena Internet - pohjaisena kyselytutkimuksena tilastollisen analyysin menetelmin. Otos (N=179) koostui kaikista Lappeenrannan teknillisessä yliopistossa lukuvuonna 2005-2006 opiskelleista kansainvälisistä opiskelijoista. Kyselyyn vastasi 68,7 % opiskelijoista. Johtopäätöksenä voidaan todeta, että kulttuurilla ei ole merkittävää vaikutusta yliopistoimagon muodostumiseen. Tutkimuksessa saatiin selville, että yliopiston Internet-sivujen laatu vaikuttaa positiivisesti odotetun yliopistoimagon muodostumiseen, kun taas koettuun yliopistoimagoon vaikuttavat positiivisesti odotettu yliopistoimago, pedagoginen laatu sekä opetusympäristö. Markkinoinnin näkökulmasta tulokset voidaan vetää yhteen toteamalla, että yliopistojen ei tarvitsisi räätälöidä tutkimuksessa tunnistettuja imagoon vaikuttavia tekijöitä eri kulttuureistatulevia opiskelijoita varten.
Resumo:
Multispectral images contain information from several spectral wavelengths and currently multispectral images are widely used in remote sensing and they are becoming more common in the field of computer vision and in industrial applications. Typically, one multispectral image in remote sensing may occupy hundreds of megabytes of disk space and several this kind of images may be received from a single measurement. This study considers the compression of multispectral images. The lossy compression is based on the wavelet transform and we compare the suitability of different waveletfilters for the compression. A method for selecting a wavelet filter for the compression and reconstruction of multispectral images is developed. The performance of the multidimensional wavelet transform based compression is compared to other compression methods like PCA, ICA, SPIHT, and DCT/JPEG. The quality of the compression and reconstruction is measured by quantitative measures like signal-to-noise ratio. In addition, we have developed a qualitative measure, which combines the information from the spatial and spectral dimensions of a multispectral image and which also accounts for the visual quality of the bands from the multispectral images.
Resumo:
Diplomityössä on käsitelty paperin pinnankarkeuden mittausta, joka on keskeisimpiä ongelmia paperimateriaalien tutkimuksessa. Paperiteollisuudessa käytettävät mittausmenetelmät sisältävät monia haittapuolia kuten esimerkiksi epätarkkuus ja yhteensopimattomuus sileiden papereiden mittauksissa, sekä suuret vaatimukset laboratorio-olosuhteille ja menetelmien hitaus. Työssä on tutkittu optiseen sirontaan perustuvia menetelmiä pinnankarkeuden määrittämisessä. Konenäköä ja kuvan-käsittelytekniikoita tutkittiin karkeilla paperipinnoilla. Tutkimuksessa käytetyt algoritmit on tehty Matlab® ohjelmalle. Saadut tulokset osoittavat mahdollisuuden pinnankarkeuden mittaamiseen kuvauksen avulla. Parhaimman tuloksen perinteisen ja kuvausmenetelmän välillä antoi fraktaaliulottuvuuteen perustuva menetelmä.