12 resultados para Acceleration (Physics)
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
The acceleration of solar energetic particles (SEPs) by flares and coronal mass ejections (CMEs) has been a major topic of research for the solar-terrestrial physics and geophysics communities for decades. This thesis discusses theories describing first-order Fermi acceleration of SEPs through repeated crossings at a CME-driven shock. We propose that particle trapping occurs through self-generated Alfvén waves, leading to a turbulent trapping region in front of the shock. Decelerating coronal shocks are shown to be capable of efficient SEP acceleration, provided seed particle injection is sufficient. Quasi-parallel shocks are found to inject thermal particles with good efficiency. The roles of minimum injection velocities, cross-field diffusion, downstream scattering efficiency and cross-shock potential are investigated in detail, with downstream isotropisation timescales having a major effect on injection efficiency. Accelerated spectra of heavier elements up to iron are found to exhibit significantly harder spectra than protons. Accelerated spectra cut-off energies are found to scale proportional to (Q/A)1.5, which is explained through analysis of the spectral shape of amplified Alfvénic turbulence. Acceleration times to different threshold energies are found to be non-linear, indicating that self-consistent time-dependent simulations are required in order to expose the full extent of acceleration dynamics. The well-established quasilinear theory (QLT) of particle scattering is investigated by comparing QLT scattering coefficients with those found via full-orbit simulations. QLT is found to overemphasise resonance conditions. This finding supports the simplifications implemented in the presented coronal shock acceleration (CSA) simulation software. The CSA software package is used to simulate a range of acceleration scenarios. The results are found to be in agreement with well-established particle acceleration theory. At the same time, new spatial and temporal dynamics of particle population trapping and wave evolution are revealed.
Resumo:
There are several factors affecting network performance. Some of these can be controlled whereas the others are more fixed. These factors are studied in this thesis from the wide area network (WAN) perspective and the focus is on corporate networks. Another area of interest is the behavior of application protocols when used through WAN. The aim is to study the performance of commonly used application protocols in corporate networks. After identifying the performance problems in corporate WANs the thesis concentrates on methods for improving WAN performance. WAN acceleration is presented as a possible solution. The different acceleration methods are discussed in order to give the reader a theoretical view on how the accelerators can improve WAN performance. Guidelines on the installation of accelerators into a network are also discussed. After a general overview on accelerators is given, one accelerator vendor currently on market is selected for a further analysis. The work is also a case study where two accelerators are installed into a target company network for testing purposes. The tests are performed with three different application protocols that have been identified as critical applications for the target corporation. The aim of the tests is to serve as a proof of concept for WAN acceleration in the target network.
Resumo:
Julkaisumaa: 056 BE BEL Belgia
Resumo:
Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014
Resumo:
The use of exact coordinates of pebbles and fuel particles of pebble bed reactor modelling becoming possible in Monte Carlo reactor physics calculations is an important development step. This allows exact modelling of pebble bed reactors with realistic pebble beds without the placing of pebbles in regular lattices. In this study the multiplication coefficient of the HTR-10 pebble bed reactor is calculated with the Serpent reactor physics code and, using this multiplication coefficient, the amount of pebbles required for the critical load of the reactor. The multiplication coefficient is calculated using pebble beds produced with the discrete element method and three different material libraries in order to compare the results. The received results are lower than those from measured at the experimental reactor and somewhat lower than those gained with other codes in earlier studies.
Resumo:
Syksy Räsänen's presentation at Kirjastoverkkopäivät, Helsinki 21.10.2015.