3 resultados para ALPHA-GALACTOSIDASE GENE

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neutral alpha-mannosidase and lysosomal MAN2B1 alpha-mannosidase belong to glycoside hydrolase family 38, which contains essential enzymes required for the modification and catabolism of asparagine-linked glycans on proteins. MAN2B1 catalyses lysosomal glycan degradation, while neutral α-mannosidase is most likely involved in the catabolism of cytosolic free oligosaccharides. These mannose containing saccharides are generated during glycosylation or released from misfolded glycoproteins, which are detected by quality control in the endoplasmic reticulum. To characterise the biological function of human neutral α-mannosidase, I cloned the alpha-mannosidase cDNA and recombinantly expressed the enzyme. The purified enzyme trimmed the putative natural substrate Man9GlcNAc to Man5GlcNAc, whereas the reducing end GlcNAc2 limited trimming to Man8GlcNAc2. Neutral α-mannosidase showed highest enzyme activity at neutral pH and was activated by the cations Fe2+, Co2+ and Mn2+, Cu2+ in turn had a strong inhibitory effect on alpha-mannosidase activity. Analysis of its intracellular localisation revealed that neutral alpha-mannosidase is cytosolic and colocalises with proteasomes. Further work showed that the overexpression of neutral alpha-mannosidase affected the cytosolic free oligosaccharide content and led to enhanced endoplasmic reticulum associated degradation and underglycosylation of secreted proteins. The second part of the study focused on MAN2B1 and the inherited lysosomal storage disorder α-mannosidosis. In this disorder, deficient MAN2B1 activity is associated with mutations in the MAN2B1 gene. The thesis reports the molecular consequences of 35 alpha-mannosidosis associated mutations, including 29 novel missense mutations. According to experimental analyses, the mutations fall into four groups: Mutations, which prevent transport to lysosomes are accompanied with a lack of proteolytic processing of the enzyme (groups 1 and 3). Although the rest of the mutations (groups 2 and 4) allow transport to lysosomes, the mutated proteins are less efficiently processed to their mature form than is wild type MAN2B1. Analysis of the effect of the mutations on the model structure of human lysosomal alpha-mannosidase provides insights on their structural consequences. Mutations, which affect amino acids important for folding (prolines, glycines, cysteines) or domain interface interactions (arginines), arrest the enzyme in the endoplasmic reticulum. Surface mutations and changes, which do not drastically alter residue volume, are tolerated better. Descriptions of the mutations and clinical data are compiled in an α-mannosidosis database, which will be available for the scientific community. This thesis provides a detailed insight into two ubiquitous human alpha-mannosidases. It demonstrates that neutral alpha-mannosidase is involved in the degradation of cytosolic oligosaccharides and suggests that the regulation of this α-mannosidase is important for maintaining the cellular homeostasis of N-glycosylation and glycan degradation. The study on alpha-mannosidosis associated mutations identifies multiple mechanisms for how these mutations are detrimental for MAN2B1 activity. The α-mannosidosis database will benefit both clinicians and scientific research on lysosomal alpha‑mannosidosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multiple sclerosis (MS) is a chronic immune-mediated inflammatory disorder of the central nervous system. MS is the most common disabling central nervous system (CNS) disease of young adults in the Western world. In Finland, the prevalence of MS ranges between 1/1000 and 2/1000 in different areas. Fabry disease (FD) is a rare hereditary metabolic disease due to mutation in a single gene coding α-galactosidase A (alpha-gal A) enzyme. It leads to multi-organ pathology, including cerebrovascular disease. Currently there are 44 patients with diagnosed FD in Finland. Magnetic resonance imaging (MRI) is commonly used in the diagnostics and follow-up of these diseases. The disease activity can be demonstrated by occurrence of new or Gadolinium (Gd)-enhancing lesions in routine studies. Diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) are advanced MR sequences which can reveal pathologies in brain regions which appear normal on conventional MR images in several CNS diseases. The main focus in this study was to reveal whether whole brain apparent diffusion coefficient (ADC) analysis can be used to demonstrate MS disease activity. MS patients were investigated before and after delivery and before and after initiation of diseasemodifying treatment (DMT). In FD, DTI was used to reveal possible microstructural alterations at early timepoints when excessive signs of cerebrovascular disease are not yet visible in conventional MR sequences. Our clinical and MRI findings at 1.5T indicated that post-partum activation of the disease is an early and common phenomenon amongst mothers with MS. MRI seems to be a more sensitive method for assessing MS disease activity than the recording of relapses. However, whole brain ADC histogram analysis is of limited value in the follow-up of inflammatory conditions in a pregnancy-related setting because the pregnancy-related physiological effects on ADC overwhelm the alterations in ADC associated with MS pathology in brain tissue areas which appear normal on conventional MRI sequences. DTI reveals signs of microstructural damage in brain white matter of FD patients before excessive white matter lesion load can be observed on conventional MR scans. DTI could offer a valuable tool for monitoring the possible effects of enzyme replacement therapy in FD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The melanocortin system is an important regulator of feeding, energy metabolism,and cardiovascular function and it consists of the pro-opiomelanocortin (POMC) derived melanocyte stimulating hormones (α-, β- and γ-MSH) and their endogenous melanocortin receptors, MC1R to MC5R. In the hypothalamus, α-MSH reduces food intake, and increases energy expenditure and sympathetic tone by binding to MC4R. Mutations affecting the MC4R gene lead to obesity in mammals. On the other hand, the metabolic effects of MC3R stimulation using agonists such as the endogenously expressed γ-MSH have been less extensively explored. The main objective of this study was to investigate the long-term effects of increased melanocortin tone in key areas of metabolic regulation in the central nervous system (CNS) in order to investigate the sitespecific roles of both α-MSH and γ-MSH. The aim was to stereotaxically induce local overexpression of single melanocortin peptides using lentiviral vectors expressing α-MSH (LVi-α-MSH-EGFP) and γ-MSH (LVi-γ-MSH-EGFP). The lentiviral vectors were shown to produce a long-term overexpression and biologically active peptides in cell-based assays. The LVi-α-MSHEGFP was targeted to the arcuate nucleus in the hypothalamus of diet induced obese mice where it reduced weight gain and adiposity independently of food intake. When the nucleus tractus solitarus in the brainstem was targeted, the LVi-α-MSH-EGFP treatment was shown to cause a small decrease in adiposity, which did not impact weight development. However, the α-MSH treatment increased heart rate, which was attenuated by adrenergic receptor blockade indicative of increased sympathetic activity. The LVi-γ-MSH-EGFP was targeted to the hypothalamus where it decreased fat mass in mice eating the standard diet, but the effect was abated if animals consumed a high-fat Western type diet. When the diet induced obese mice were subjected again to the standard diet, the LVi-γ-MSH-EGFP treated animals displayed increased weight loss and reduced adiposity. These results indicate that the long-term central anti-obesity effects of α-MSH are independent of food intake. In addition, overexpression of α-MSH in the brain stem efficiently blocked the development of adiposity, but increased sympathetic tone. The evidence presented in this thesis also indicates that selective MC3R agonists such as γ-MSH could be potential therapeutics in combination with low fat diets.