6 resultados para ALGA MICROCYSTIS-AERUGINOSA

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Opinnäytetyön tarkoituksena oli validoida kosmetiikan laadunvalvonnassa käytetyn mikrobin, Pseudomonas aeruginosan, osoitusmenetelmä. Menetelmä validoitiin Tullilaboratori-on mikrobiologian jaostolle, joka tutkii elintarvikkeiden lisäksi myös kosmetiikkaa. Se käyt-tää kosmeettisten tuotteiden tutkimisessa amerikkalaista menetelmää. Tavoitteena oli selvittää, onko jo käytössä oleva menetelmä toimiva kyseisen bakteerin suhteen ja voidaanko se akkreditoida. Validointia varten valittiin erilaisista kosteusvoide-ryhmistä kolme matriisia, joihin siirrostettiin kohdemikrobia sekä taustaflooraa. Ensimmäiseen matriisiryhmään kuului tuote, joka sisälsi vähän säilöntäaineita, toinen matriisi oli luontaistuote ja kolmas matriisi päivittäiskaupan tuote. Näytteet viljeltiin pintalevityksenä spesifisille Pseudomonas Isolation Agar -maljoille. Menetelmän toistettavuuden laskemiseksi tehtiin seitsemän toistomääritystä ja uusittavuuden laskemiseksi viisi toistomääritystä viljelemällä rinnakkain toisen viljelijän kanssa. Tuloksista laskettiin standardipoikkeamat käyttäen kaikkia saatuja arvoja sekä poistamalla raja-arvot. Menetelmän toistettavuus ja uusittavuus olivat tyydyttäviä, sillä standardipoikkeamat eivät olleen kovin suuria. Spesifisyyttä varten varmistettiin viisi tyypillistä ja epätyypillistä pesäkettä kaupallisella kitillä. Menetelmä oli spesifinen, sillä kohdemikrobi pystyttiin toteamaan kaikista näytteistä, häiritsevistä taustamikrobeista huolimatta. Menetelmän toteamisrajan selvittämiseksi näytteisiin lisättiin kolmea eri bakteerisiirrostetta, joiden pitoisuudet olivat melko alhaiset ja lähellä toisiaan. Pseudomonas aeruginosa pystyttiin toteamaan alhaisimmalla tasolla. Tuloksien perusteella voidaan todeta, että menetelmän validointi onnistui

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of my thesis is to assess mechanisms of ecological community control in macroalgal communities in the Baltic Sea. In the top-down model, predatory fish feed on invertebrate mesograzers, releasing algae partly from grazing pressure. Such a reciprocal relationship is called trophic cascade. In the bottom-up model, nutrients increase biomass in the food chain. The nutrients are first assimilated by algae and, via food chain, increase also abundance of grazers and predators. Previous studies on oceanic shores have described these two regulative mechanisms in the grazer - alga link, but how they interact in the trophic cascades from fish to algae is still inadequately known. Because the top-down and bottom-up mechanisms are predicted to depend on environmental disturbances, such as wave stress and light, I have studied these models at two distinct water depths. There are five factorial field experiments behind the thesis, which were all conducted in the Finnish Archipelago Sea. In all the experiments, I studied macroalgal colonization - either density, filament length or biomass - on submerged colonization substrates. By excluding predatory fish and mesograzers from the algal communities, the studies compared the strength of the top-down control to natural algal communities. A part of the experimental units were, in addition, exposed to enriched nitrogen and phosphorus concentrations, which enabled testing of bottom-up control. These two models of community control were further investigated in shallow (<1 m) and deep (ca. 3 m) water. Moreover, the control mechanisms were also expected to depend on grazer species. Therefore different grazer species were enclosed into experimental units and their impacts on macroalgal communities were followed specifically. The community control in the Baltic rocky shores was found to follow theoretical predictions, which have not been confirmed by field studies before. Predatory fish limited grazing impact, which was seen as denser algal communities and longer algal filaments. Nutrient enrichment increased density and filament length of annual algae and, thus, changed the species composition of the algal community. The perennial alga Fucus vesiculosusA and the red alga Ceramium tenuicorne suffered from the increased nutrient availabilities. The enriched nutrient conditions led to denser grazer fauna, thereby causing strong top-down control over both the annual and perennial macroalgae. The strength of the top-down control seemed to depend on the density and diversity of grazers and predators as well as on the species composition of macroalgal assemblages. The nutrient enrichment led to, however, weaker limiting impact of predatory fish on grazer fauna, because fish stocks did not respond as quickly to enhanced resources in the environment as the invertebrate fauna. According to environmental stress model, environmental disturbances weaken the top-down control. For example, on a wave-exposed shore, wave stress causes more stress to animals close to the surface than deeper on the shore. Mesograzers were efficient consumers at both the depths, while predation by fish was weaker in shallow water. Thus, the results supported the environmental stress model, which predicts that environmental disturbance affects stronger the higher a species is in the food chain. This thesis assessed the mechanisms of community control in three-level food chains and did not take into account higher predators. Such predators in the Baltic Sea are, for example, cormorant, seals, white-tailed sea eagle, cod and salmon. All these predatory species were recently or are currently under intensive fishing, hunting and persecution, and their stocks have only recently increased in the region. Therefore, it is possible that future densities of top predators may yet alter the strengths of the controlling mechanisms in the Baltic littoral zone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cranial bone reconstructions are necessary for correcting large skull bone defects due to trauma, tumors, infections and craniotomies. Traditional synthetic implant materials include solid or mesh titanium, various plastics and ceramics. Recently, biostable glass-fiber reinforced composites (FRC), which are based on bifunctional methacrylate resin, were introduced as novel implant solution. FRCs were originally developed and clinically used in dental applications. As a result of further in vitro and in vivo testing, these composites were also approved for clinical use in cranial surgery. To date, reconstructions of large bone defects were performed in 35 patients. This thesis is dedicated to the development of a novel FRC-based implant for cranial reconstructions. The proposed multi-component implant consists of three main parts: (i) porous FRC structure; (ii) bioactive glass granules embedded between FRC layers and (iii) a silver-polysaccharide nanocomposite coating. The porosity of the FRC structure should allow bone ingrowth. Bioactive glass as an osteopromotive material is expected to stimulate the formation of new bone. The polysaccharide coating is expected to prevent bacterial colonization of the implant. The FRC implants developed in this study are based on the porous network of randomly-oriented E-glass fibers bound together by non-resorbable photopolymerizable methacrylate resin. These structures had a total porosity of 10–70 volume %, of which > 70% were open pores. The pore sizes > 100 μm were in the biologically-relevant range (50-400 μm), which is essential for vascularization and bone ingrowth. Bone ingrowth into these structures was simulated by imbedding of porous FRC specimens in gypsum. Results of push-out tests indicated the increase in the shear strength and fracture toughness of the interface with the increase in the total porosity of FRC specimens. The osteopromotive effect of bioactive glass is based on its dissolution in the physiological environment. Here, calcium and phosphate ions, released from the glass, precipitated on the glass surface and its proximity (the FRC) and formed bone-like apatite. The biomineralization of the FRC structure, due to the bioactive glass reactions, was studied in Simulated Body Fluid (SBF) in static and dynamic conditions. An antimicrobial, non-cytotoxic polysaccharide coating, containing silver nanoparticles, was obtained through strong electrostatic interactions with the surface of FRC. In in vitro conditions the lactose-modified chitosan (chitlac) coating showed no signs of degradation within seven days of exposure to lysozyme or one day to hydrogen peroxide (H2O2). The antimicrobial efficacy of the coating was tested against Staphylococcus aureus and Pseudomonas aeruginosa. The contact-active coating had an excellent short time antimicrobial effect. The coating neither affected the initial adhesion of microorganisms to the implant surface nor the biofilm formation after 24 h and 72 h of incubation. Silver ions released to the aqueous environment led to a reduction of bacterial growth in the culture medium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Non-metallic implants made of bioresorbable or biostable synthetic polymers are attractive options in many surgical procedures, ranging from bioresorbable suture anchors of arthroscopic surgery to reconstructive skull implants made of biostable fiber-reinforced composites. Among other benefits, non-metallic implants produce less interference in imaging. Bioresorbable polymer implants may be true multifunctional, serving as osteoconductive scaffolds and as matrices for simultaneous delivery of bone enhancement agents. As a major advantage for loading conditions, mechanical properties of biostable fiber-reinforced composites can be matched with those of the bone. Unsolved problems of these biomaterials are related to the risk of staphylococcal biofilm infections and to the low osteoconductivity of contemporary bioresorbable composite implants. This thesis was focused on the research and development of a multifunctional implant model with enhanced osteoconductivity and low susceptibility to infection. In addition, the experimental models for assessment, diagnostics and prophylaxis of biomaterial-related infections were established. The first experiment (Study I) established an in vitro method for simultaneous evaluation of calcium phosphate and biofilm formation on bisphenol-Aglycidyldimethacrylate and triethylenglycoldimethacrylate (BisGMA-TEGDMA) thermosets with different content of bioactive glass 45S5. The second experiment (Study II) showed no significant difference in osteointegration of nanostructured and microsized polylactide-co-glycolide/β-tricalcium phosphate (PLGA /β-TCP) composites in a minipig model. The third experiment (Study III) demonstrated that positron emission tomography (PET) imaging with the novel 68Ga labelled 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) CD33 related sialic-acid immunoglobulin like lectins (Siglec-9) tracer was able to detect inflammatory response to S. epidermidis and S. aureus peri-implant infections in an intraosseous polytetrafluoroethylene catheter model. In the fourth experiment (Study IV), BisGMATEGDMA thermosets coated with lactose-modified chitosan (Chitlac) and silver nanoparticles exhibited antibacterial activity against S. aureus and P. aeruginosa strains in an in vitro biofilm model and showed in vivo biocompatibility in a minipig model. In the last experiment (Study V), a selective androgen modulator (SARM) released from a poly(lactide)-co-ε-caprolactone (PLCL) polymer matrix failed to produce a dose-dependent enhancement of peri-implant osteogenesis in a bone marrow ablation model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lichens are symbiotic organisms, which consist of the fungal partner and the photosynthetic partner, which can be either an alga or a cyanobacterium. In some lichen species the symbiosis is tripartite, where the relationship includes both an alga and a cyanobacterium alongside the primary symbiont, fungus. The lichen symbiosis is an evolutionarily old adaptation to life on land and many extant fungal species have evolved from lichenised ancestors. Lichens inhabit a wide range of habitats and are capable of living in harsh environments and on nutrient poor substrates, such as bare rocks, often enduring frequent cycles of drying and wetting. Most lichen species are desiccation tolerant, and they can survive long periods of dehydration, but can rapidly resume photosynthesis upon rehydration. The molecular mechanisms behind lichen desiccation tolerance are still largely uncharacterised and little information is available for any lichen species at the genomic or transcriptomic level. The emergence of the high-throughput next generation sequencing (NGS) technologies and the subsequent decrease in the cost of sequencing new genomes and transcriptomes has enabled non-model organism research on the whole genome level. In this doctoral work the transcriptome and genome of the grey reindeer lichen, Cladonia rangiferina, were sequenced, de novo assembled and characterised using NGS and traditional expressed sequence tag (EST) technologies. RNA extraction methods were optimised to improve the yield and quality of RNA extracted from lichen tissue. The effects of rehydration and desiccation on C. rangiferina gene expression on whole transcriptome level were studied and the most differentially expressed genes were identified. The secondary metabolites present in C. rangiferina decreased the quality – integrity, optical characteristics and utility for sensitive molecular biological applications – of the extracted RNA requiring an optimised RNA extraction method for isolating sufficient quantities of high-quality RNA from lichen tissue in a time- and cost-efficient manner. The de novo assembly of the transcriptome of C. rangiferina was used to produce a set of contiguous unigene sequences that were used to investigate the biological functions and pathways active in a hydrated lichen thallus. The de novo assembly of the genome yielded an assembly containing mostly genes derived from the fungal partner. The assembly was of sufficient quality, in size similar to other lichen-forming fungal genomes and included most of the core eukaryotic genes. Differences in gene expression were detected in all studied stages of desiccation and rehydration, but the largest changes occurred during the early stages of rehydration. The most differentially expressed genes did not have any annotations, making them potentially lichen-specific genes, but several genes known to participate in environmental stress tolerance in other organisms were also identified as differentially expressed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In marine benthic communities, herbivores consume a considerable proportion of primary producer biomass and, thus, generate selection for the evolution of resistance traits. According to the theory of plant defenses, resistance traits are costly to produce and, consequently, inducible resistance traits are adaptive in conditions of variable herbivory, while in conditions of constant/strong herbivory constitutive resistance traits are selected for. The evolution of resistance plasticity may be constrained by the costs of resistance or lack of genetic variation in resistance. Furthermore, resource allocation to induced resistance may be affected by higher trophic levels preying on herbivores. I studied the resistance to herbivory of a foundation species, the brown alga Fucus vesiculosus. By using factorial field experiments, I explored the effects of herbivores and fish predators on growth and resistance of the alga in two seasons. I explored genetic variation in and allocation costs of resistance traits as well as their chemical basis and their effects on herbivore performance. Using a field experiment I tested if induced resistance spreads via water-borne cues from one individual to another in relevant ecological conditions. I found that in the northern Baltic Sea F. vesiculosus communities, strength of three trophic interactions strongly vary among seasons. The highly synchronized summer reproduction of herbivores promoted their escape from the top-down control of fish predators in autumn. This resulted into large grazing losses in algal stands. In spring, herbivore densities were low and regulated by fish, which, thus,enhanced algal growth. The resistance of algae to herbivory increased with an increase in constitutive phlorotannin content. Furthermore, individuals adopted induced resistance when grazed and when exposed to water-borne cues originating from grazing of conspecific algae both in the laboratory and in field conditions. Induced resistance was adopted to a lesser extent in the presence of fish predators. The results in this thesis indicate that inducible resistance in F. vesiculosus is an adaptation to varying herbivory in the northern Baltic Sea. The costs of resistance and strong seasonality of herbivory have likely contributed to the evolution of this defense strategy. My findings also show that fish predators have positive cascading effects on F. vesiculosus which arise via reduced herbivory but possibly also through reduced resource allocation to resistance. I further found evidence that the spread of resistance via water-borne cues also occurs in ecologically realistic conditions in natural marine sublittoral. Thus, water-borne induction may enable macroalgae to cope with the strong grazing pressure characteristic of marine benthic communities. The results presented here show that seasonality can have pronounced effects on the biotic interactions in marine benthic communities and thereafter influence the evolution of resistance traits in primary producers.