29 resultados para ADAPTIVE REGRESSION SPLINES
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Forest inventories are used to estimate forest characteristics and the condition of forest for many different applications: operational tree logging for forest industry, forest health state estimation, carbon balance estimation, land-cover and land use analysis in order to avoid forest degradation etc. Recent inventory methods are strongly based on remote sensing data combined with field sample measurements, which are used to define estimates covering the whole area of interest. Remote sensing data from satellites, aerial photographs or aerial laser scannings are used, depending on the scale of inventory. To be applicable in operational use, forest inventory methods need to be easily adjusted to local conditions of the study area at hand. All the data handling and parameter tuning should be objective and automated as much as possible. The methods also need to be robust when applied to different forest types. Since there generally are no extensive direct physical models connecting the remote sensing data from different sources to the forest parameters that are estimated, mathematical estimation models are of "black-box" type, connecting the independent auxiliary data to dependent response data with linear or nonlinear arbitrary models. To avoid redundant complexity and over-fitting of the model, which is based on up to hundreds of possibly collinear variables extracted from the auxiliary data, variable selection is needed. To connect the auxiliary data to the inventory parameters that are estimated, field work must be performed. In larger study areas with dense forests, field work is expensive, and should therefore be minimized. To get cost-efficient inventories, field work could partly be replaced with information from formerly measured sites, databases. The work in this thesis is devoted to the development of automated, adaptive computation methods for aerial forest inventory. The mathematical model parameter definition steps are automated, and the cost-efficiency is improved by setting up a procedure that utilizes databases in the estimation of new area characteristics.
Resumo:
Summary
Resumo:
Abstract
Resumo:
Kolmen eri hitsausliitoksen väsymisikä arvio on analysoitu monimuuttuja regressio analyysin avulla. Regression perustana on laaja S-N tietokanta joka on kerätty kirjallisuudesta. Tarkastellut liitokset ovat tasalevy liitos, krusiformi liitos ja pitkittäisripa levyssä. Muuttujina ovat jännitysvaihtelu, kuormitetun levyn paksuus ja kuormitus tapa. Paksuus effekti on käsitelty uudelleen kaikkia kolmea liitosta ajatellen. Uudelleen käsittelyn avulla on varmistettu paksuus effektin olemassa olo ennen monimuuttuja regressioon siirtymistä. Lineaariset väsymisikä yhtalöt on ajettu kolmelle hitsausliitokselle ottaen huomioon kuormitetun levyn paksuus sekä kuormitus tapa. Väsymisikä yhtalöitä on verrattu ja keskusteltu testitulosten valossa, jotka on kerätty kirjallisuudesta. Neljä tutkimustaon tehty kerättyjen väsymistestien joukosta ja erilaisia väsymisikä arvio metodeja on käytetty väsymisiän arviointiin. Tuloksia on tarkasteltu ja niistä keskusteltu oikeiden testien valossa. Tutkimuksissa on katsottu 2mm ja 6mm symmetristäpitkittäisripaa levyssä, 12.7mm epäsymmetristä pitkittäisripaa, 38mm symmetristä pitkittäisripaa vääntökuormituksessa ja 25mm/38mm kuorman kantavaa krusiformi liitosta vääntökuormituksessa. Mallinnus on tehty niin lähelle testi liitosta kuin mahdollista. Väsymisikä arviointi metodit sisältävät hot-spot metodin jossa hot-spot jännitys on laskettu kahta lineaarista ja epälineaarista ekstrapolointiakäyttäen sekä paksuuden läpi integrointia käyttäen. Lovijännitys ja murtumismekaniikka metodeja on käytetty krusiformi liitosta laskiessa.
Resumo:
Superheater corrosion causes vast annual losses for the power companies. With a reliable corrosion prediction method, the plants can be designed accordingly, and knowledge of fuel selection and determination of process conditions may be utilized to minimize superheater corrosion. Growing interest to use recycled fuels creates additional demands for the prediction of corrosion potential. Models depending on corrosion theories will fail, if relations between the inputs and the output are poorly known. A prediction model based on fuzzy logic and an artificial neural network is able to improve its performance as the amount of data increases. The corrosion rate of a superheater material can most reliably be detected with a test done in a test combustor or in a commercial boiler. The steel samples can be located in a special, temperature-controlled probe, and exposed to the corrosive environment for a desired time. These tests give information about the average corrosion potential in that environment. Samples may also be cut from superheaters during shutdowns. The analysis ofsamples taken from probes or superheaters after exposure to corrosive environment is a demanding task: if the corrosive contaminants can be reliably analyzed, the corrosion chemistry can be determined, and an estimate of the material lifetime can be given. In cases where the reason for corrosion is not clear, the determination of the corrosion chemistry and the lifetime estimation is more demanding. In order to provide a laboratory tool for the analysis and prediction, a newapproach was chosen. During this study, the following tools were generated: · Amodel for the prediction of superheater fireside corrosion, based on fuzzy logic and an artificial neural network, build upon a corrosion database developed offuel and bed material analyses, and measured corrosion data. The developed model predicts superheater corrosion with high accuracy at the early stages of a project. · An adaptive corrosion analysis tool based on image analysis, constructedas an expert system. This system utilizes implementation of user-defined algorithms, which allows the development of an artificially intelligent system for thetask. According to the results of the analyses, several new rules were developed for the determination of the degree and type of corrosion. By combining these two tools, a user-friendly expert system for the prediction and analyses of superheater fireside corrosion was developed. This tool may also be used for the minimization of corrosion risks by the design of fluidized bed boilers.
Resumo:
Tulevaisuudessa siirrettävät laitteet, kuten matkapuhelimet ja kämmenmikrot, pystyvät muodostamaan verkkoyhteyden käyttäen erilaisia yhteysmenetelmiä eri tilanteissa. Yhteysmenetelmillä on toisistaan poikkeavat viestintäominaisuudet mm. latenssin, kaistanleveyden, virhemäärän yms. suhteen. Langattomille yhteysmenetelmille on myös ominaista tietoliikenneyhteyden ominaisuuksien voimakas muuttuminen ympäristön suhteen. Parhaan suorituskyvyn ja käytettävyyden saavuttamiseksi, on siirrettävän laitteen pystyttävä mukautumaan käytettyyn viestintämenetelmään ja viestintäympäristössä tapahtuviin muutoksiin. Olennainen osa tietoliikenteessä ovat protokollapinot, jotka mahdollistavat tietoliikenneyhteyden järjestelmien välillä tarjoten verkkopalveluita päätelaitteen käyttäjäsovelluksille. Jotta protokollapinot pystyisivät mukautumaan tietyn viestintäympäristön ominaisuuksiin, on protokollapinon käyttäytymistä pystyttävä muuttamaan ajonaikaisesti. Perinteisesti protokollapinot ovat kuitenkin rakennettu muuttumattomiksi niin, että mukautuminen tässä laajuudessa on erittäin vaikeaa toteuttaa, ellei jopa mahdotonta. Tämä diplomityö käsittelee mukautuvien protokollapinojen rakentamista käyttäen komponenttipohjaista ohjelmistokehystä joka mahdollistaa protokollapinojen ajonaikaisen muuttamisen. Toteuttamalla esimerkkijärjestelmän, ja mittaamalla sen suorituskykyä vaihtelevassa tietoliikenneympäristössä, osoitamme, että mukautuvat protokollapinot ovat mahdollisia rakentaa ja ne tarjoavat merkittäviä etuja erityisesti tulevaisuuden siirrettävissä laitteissa.
Resumo:
Oral mucosa is a frequent site of primary herpes simplex virus type 1 (HSV-1) infection, whereas intraoral recurrent disease is very rare. Instead, reactivation from latency predominantly results in asymptomatic HSV shedding to saliva or recurrent labial herpes (RLH) with highly individual frequency. The current study aimed to elucidate the role of human oral innate and acquired immune mechanisms in modulation of HSV infection in orolabial region. Saliva was found to neutralize HSV-1, and to protect cells from infection independently of salivary antibodies. Neutralization capacity was higher in saliva from asymptomatic HSV-seropositive individuals compared to subjects with history of RLH or seronegative controls. Neutralization was at least partially associated with salivary lactoferrin content. Further, lactoferrin and peroxidase-generated hypothiocyanite were found to either neutralize HSV-1 or interfere with HSV-1 replication, whereas lysozyme displayed no anti-HSV-1 activity. Lactoferrin was also shown to modulate HSV-1 infection by inhibiting keratinocyte proliferation. RLH susceptibility was further found to be associated with Th2 biased cytokine responses against HSV, and a higher level of anti- HSV-IgG with Th2 polarization, indicating lack of efficiency of humoral response in the control of HSV disease. In a three-dimensional cell culture, keratinocytes were found to support both lytic and nonproductive infection, suggesting HSV persistence in epithelial cells, and further emphasizing the importance of peripheral immune control of HSV. These results suggest that certain innate salivary antimicrobial compounds and Th1 type cellular responses are critically important in protecting the host against HSV disease, implying possible applications in drug, vaccine and gene therapy design.
Resumo:
This work presents new, efficient Markov chain Monte Carlo (MCMC) simulation methods for statistical analysis in various modelling applications. When using MCMC methods, the model is simulated repeatedly to explore the probability distribution describing the uncertainties in model parameters and predictions. In adaptive MCMC methods based on the Metropolis-Hastings algorithm, the proposal distribution needed by the algorithm learns from the target distribution as the simulation proceeds. Adaptive MCMC methods have been subject of intensive research lately, as they open a way for essentially easier use of the methodology. The lack of user-friendly computer programs has been a main obstacle for wider acceptance of the methods. This work provides two new adaptive MCMC methods: DRAM and AARJ. The DRAM method has been built especially to work in high dimensional and non-linear problems. The AARJ method is an extension to DRAM for model selection problems, where the mathematical formulation of the model is uncertain and we want simultaneously to fit several different models to the same observations. The methods were developed while keeping in mind the needs of modelling applications typical in environmental sciences. The development work has been pursued while working with several application projects. The applications presented in this work are: a winter time oxygen concentration model for Lake Tuusulanjärvi and adaptive control of the aerator; a nutrition model for Lake Pyhäjärvi and lake management planning; validation of the algorithms of the GOMOS ozone remote sensing instrument on board the Envisat satellite of European Space Agency and the study of the effects of aerosol model selection on the GOMOS algorithm.
Resumo:
In this diploma work advantages of coherent anti-Stokes Raman scattering spectrometry (CARS) and various methods of the quantitative analysis of substance structure with its help are considered. The basic methods and concepts of the adaptive analysis are adduced. On the basis of these methods the algorithm of automatic measurement of a scattering strip size of a target component in CARS spectrum is developed. The algorithm uses known full spectrum of target substance and compares it with a CARS spectrum. The form of a differential spectrum is used as a feedback to control the accuracy of matching. To exclude the influence of a background in CARS spectra the differential spectrum is analysed by means of its second derivative. The algorithm is checked up on the simulated simple spectra and on the spectra of organic compounds received experimentally.
Resumo:
In this thesis programmatic, application-layer means for better energy-efficiency in the VoIP application domain are studied. The work presented concentrates on optimizations which are suitable for VoIP-implementations utilizing SIP and IEEE 802.11 technologies. Energy-saving optimizations can have an impact on perceived call quality, and thus energy-saving means are studied together with those factors affecting perceived call quality. In this thesis a general view on a topic is given. Based on theory, adaptive optimization schemes for dynamic controlling of application's operation are proposed. A runtime quality model, capable of being integrated into optimization schemes, is developed for VoIP call quality estimation. Based on proposed optimization schemes, some power consumption measurements are done to find out achievable advantages. Measurement results show that a reduction in power consumption is possible to achieve with the help of adaptive optimization schemes.
Resumo:
Tämä työ on tehty osana MASTO-tutkimushanketta, jonka tarkoituksena on kehittää ohjelmistotestauksen adaptiivinen referenssimalli. Työ toteutettiin tilastollisena tutkimuksena käyttäen survey-menetelmää. Tutkimuksessa haastateltiin 31 organisaatioyksikköä eri puolelta suomea, jotka tekevät keskikriittisiä sovelluksia. Tutkimuksen hypoteeseina oli laadun riippuvuus ohjelmistokehitysmenetelmästä, asiakkaan osallistumisesta, standardin toteutumisesta, asiakassuhteesta, liiketoimintasuuntautuneisuudesta, kriittisyydestä, luottamuksesta ja testauksen tasosta. Hypoteeseista etsittiin korrelaatiota laadun kanssa tekemällä korrelaatio ja regressioanalyysi. Lisäksi tutkimuksessa kartoitettiin minkälaisia ohjelmistokehitykseen liittyviä käytäntöjä, menetelmiä ja työkaluja organisaatioyksiköissä käytettiin, ongelmia ja parannusehdotuksia liittyen ohjelmistotestaukseen, merkittävimpiä tapoja asiakkaan vaikuttamiseksi ohjelmiston laatuun sekä suurimpia hyötyjä ja haittoja ohjelmistokehityksen tai testauksen ulkoistamisessa. Tutkimuksessa havaittiin, että laatu korreloi positiivisesti ja tilastollisesti merkitsevästi testauksen tason, standardin toteutumisen, asiakasosallistumisen suunnitteluvaiheessa sekä asiakasosallistumisen ohjaukseen kanssa, luottamuksen ja yhden asiakassuhteeseen liittyvän osakysymyksen kanssa. Regressioanalyysin perusteella muodostettiin regressioyhtälö, jossa laadun todettiin positiivisesti riippuvan standardin toteutumisesta, asiakasosallistumisesta suunnitteluvaiheessa sekä luottamuksesta.