2 resultados para ACUTE EXERCISE

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Virtually every cell and organ in the human body is dependent on a proper oxygen supply. This is taken care of by the cardiovascular system that supplies tissues with oxygen precisely according to their metabolic needs. Physical exercise is one of the most demanding challenges the human circulatory system can face. During exercise skeletal muscle blood flow can easily increase some 20-fold and its proper distribution to and within muscles is of importance for optimal oxygen delivery. The local regulation of skeletal muscle blood flow during exercise remains little understood, but adenosine and nitric oxide may take part in this process. In addition to acute exercise, long-term vigorous physical conditioning also induces changes in the cardiovasculature, which leads to improved maximal physical performance. The changes are largely central, such as structural and functional changes in the heart. The function and reserve of the heart’s own vasculature can be studied by adenosine infusion, which according to animal studies evokes vasodilation via it’s a2A receptors. This has, however, never been addressed in humans in vivo and also studies in endurance athletes have shown inconsistent results regarding the effects of sport training on myocardial blood flow. This study was performed on healthy young adults and endurance athletes and local skeletal and cardiac muscle blod flow was measured by positron emission tomography. In the heart, myocardial blood flow reserve and adenosine A2A receptor density, and in skeletal muscle, oxygen extraction and consumption was also measured. The role of adenosine in the control of skeletal muscle blood flow during exercise, and its vasodilator effects, were addressed by infusing competitive inhibitors and adenosine into the femoral artery. The formation of skeletal muscle nitric oxide was also inhibited by a drug, with and without prostanoid blockade. As a result and conclusion, it can be said that skeletal muscle blood flow heterogeneity decreases with increasing exercise intensity most likely due to increased vascular unit recruitment, but exercise hyperemia is a very complex phenomenon that cannot be mimicked by pharmacological infusions, and no single regulator factor (e.g. adenosine or nitric oxide) accounts for a significant part of exercise-induced muscle hyperemia. However, in the present study it was observed for the first time in humans that nitric oxide is not only important regulator of the basal level of muscle blood flow, but also oxygen consumption, and together with prostanoids affects muscle blood flow and oxygen consumption during exercise. Finally, even vigorous endurance training does not seem to lead to supranormal myocardial blood flow reserve, and also other receptors than A2A mediate the vasodilator effects of adenosine. In respect to cardiac work, atheletes heart seems to be luxuriously perfused at rest, which may result from reduced oxygen extraction or impaired efficiency due to pronouncedly enhanced myocardial mass developed to excel in strenuous exercise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The last few decades have turned childhood acute lymphoblastic leukaemia (ALL) from a virtually incurable disease to a disease with 80–90% survival rates. However, this has not come without a cost. Various late effects of the treatment are nowadays well acknowledged, and the survivors have increased cardiovascular (CV) morbidity and mortality. While the treatment of ALL may have direct toxic effects on various organ systems, lifestyle factors affect the CV risk of the survivors as well. Data on CV health and fitness after treatment with common Nordic protocols since 1986 has been scarce. This thesis aimed to study CV health and fitness and the effects of a 3-month exercise intervention in 16–30-year-old long-term survivors of childhood ALL. Fitness was poor especially in female survivors. One third reported ≤1h of moderate physical activity (PA) weekly. While the levels of other CV risk factors were similar in survivors and controls, attenuations in vascular endothelium and cardiac function were found when using advanced echocardiographic methods. The exercise programme improved fitness, insulin resistance, endothelial function as well as measures of cardiac function. While the results do not allow definite conclusions on whether the subclinical signs of cardiac and vascular endothelial dysfunction are due to the treatment of ALL or sedentary lifestyle/poor fitness after treatment, the results are interesting and emphasize the effects of PA in this population. The results indicate beneficial effects of PA on the heart health in ALL survivors and suggest that they should be encouraged to physically active lifestyle.