6 resultados para ACTIVATION-INDUCED CYTIDINE DEAMINASE
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Selective development of human T helper (Th) cells into functionally distinct Th1 and Th2 subtypes plays an essential role in the host immune response towards pathogens. However, abnormal function or differentiation of these cells can lead to development of various autoimmune diseases as well as asthma and allergy. Therefore, identification of key factors and the molecular mechanisms mediating Th1 and Th2 cell differentiation is important for understanding the molecular mechanisms of these diseases. The goal of this study was to identify novel factors involved in the regulation of Th1 and Th2 differentiation processes. A new method was optimized for enrichment of transiently transfected resting human primary T lymphocytes, that allowed the study of the influence of genes of interest in human Th1/Th2 cell differentiation and other primary Th cell functions. Functional characterization of PRELI, a novel activation-induced protein in human Th cells, identified it as a mitochondrial protein involved in the regulation of Th cell differentiation and apoptosis. By influencing the intracellular redox state, PRELI induces mitochondrial apoptosis pathway and downregulates STAT6 and Th2 differentiation. The data suggested that Calpain, an oxidative stress induced cysteine protease, is involved as a mediator in PRELI-induced downregulation of STAT6. PIM serine/threonine-specific kinases were identified as new regulators of human Th1 cell differentiation. PIM1 and PIM2 kinases were shown to be preferentially expressed in Th1 cells as compared to Th2 cells. RNA interference studies showed that PIM kinases enhance the production of IFN, the hallmark cytokine produced by Th1 cells. They also induce the expression of the key Th1-driving factor T-bet and the IL-12 signaling pathway during early phases of Th1 cell differentiation. Taken together, new regulators of human T helper cell differentiation were identified in this study, which provides new insights into the signaling mechanisms controlling the selective activation of human Th cell subsets.
Resumo:
The aim of this study was to investigate herpes simplex virus type 1 (HSV-1)- and measles virus (MV)-induced cell death. HSV-1 with deletion in genes encoding infected cell protein (ICP)4 and protein kinase Us3 (d120) induced apoptosis and cathepsin activation in epithelial (HEp-2) and monocytic (U937) cells. Inhibition of cathepsin activity decreased the amount of d120-induced apoptosis indicating that d120-induced apoptosis could be cathepsin-mediated. Also, HSV-1 infection increased caspase activation suggesting that d120-induced apoptosis is probably caspase-mediated. Cystatin treatment decreased the activity of cathepsins and the replication of HSV-1 indicating that cathepsins contribute to HSV-1 infection. Interestingly, d120 induced also necroptosis in monocytic cells. This is the first report on necroptosis in HSV-1- infected cells. MV induced apoptosis in uninfected bystander T lymphocytes, probably via interaction of MV-infected monocytes with uninfected lymphocytes. The expression of death receptor Fas was clearly increased on the surface of lymphocytes. The number of apoptotic cells and the activation of cathepsins and caspases were increased in MVinfected U937 cells suggesting that MV-induced apoptosis could be cathepsin- and caspase-mediated. Cystatin treatment inhibited cathepsin activities but not MV-induced apoptosis. Besides HSV-1-induced apoptosis, innate immune responses were studied in HSV-1-infection. HSV-1 viruses with either ICP4 and Us3, or Us3 deletion only, increased the expression of Toll-like receptor (TLR)3 and stimulated its downstream pathways leading to increased expression of type I interferon gene and to functional interferons. These findings suggest that besides controlling apoptosis, HSV-1 ICP4 and Us3 genes are involved in the control of TLR3 response in infected cell.
Resumo:
Epileptic seizures are harmful to the developing brain. During epileptic seizures, overactivation of glutamate receptors (GluR) leads to neuronal degeneration, defined as excitotoxicity. The hippocampus is especially vulnerable to excitotoxic neuronal death, but its mechanism has remained incompletely known in the developing brain. Recently, signs of activation of inflammatory processes after epileptic seizures have been detected in the hippocampus. The purpose of this thesis was to study the inflammatory reaction and death mechanisms in excitoxic neurodegeneration induced by the glutamate analogue kainic acid (KA) in the developing hippocampus. Organotypic hippocampal slice cultures (OHCs), prepared from 6-7-day-old rats (P6-7) and treated with KA, served as an in vitro model. KA-induced status epilepticus in P9 and P21 rats was used as an in vivo model. The results showed that the pyramidal cell layers of the hippocampus were the most susceptible to irreversible and age-specific neurodegeneration, which occurred in the juvenile (P21), but not in the immature (P9), rat hippocampus. The primary death mechanism was necrosis as there were no significant changes in the expression of selected apoptosis markers and morphological cellular features of necrosis were found. Inflammatory response was similarly age-dependent after KA treatment as a rapid, fulminant and wide response was detected in the juvenile, but not in the immature, rat brain. An anti-inflammatory drug treatment, given before KA, was not neuroprotective in OHCs, possibly because of the timing of the treatment. In summary, the results suggest that KA induces an age-dependent inflammatory response and necrotic neurodegeneration, which may cause disturbances in hippocampal connectivity and promote epileptogenesis.
Resumo:
Alpha2-Adrenoceptors are cell-surface G protein coupled receptors that mediate many of the effects of the catecholamines noradrenaline and adrenaline. The three human α2-adrenoceptor subtypes are widely expressed in different tissues and organs, and they mediate many different physiological and pharmacological effects in the central and peripheral nervous system and as postsynaptic receptors in target organs. Previous studies have demonstrated that α2-adrenoceptors mediate both vascular constriction and dilatation in humans. Large inter-individual variation has been observed in the vascular responses to α2-adrenoceptor activation in clinical studies. All three receptor subtypes are potential drug targets. It was therefore considered important to further elucidate the details of adrenergic vascular regulation and its genetic variation, since such knowledge may help to improve the development of future cardiovascular drugs and intensive care therapies. Dexmedetomidine is the most selective and potent α2-adrenoceptor agonist currently available for clinical use. When given systemically, dexmedetomidine induces nearly complete sympatholysis already at low concentrations, and postsynaptic effects, such vasoconstriction, can be observed with increasing concentrations. Thus, local infusions of small doses of dexmedetomidine into dorsal hand veins and the application of pharmacological sympathectomy with brachial plexus block provide a means to assess drug-induced peripheral vascular responses without interference from systemic pharmacological effects and autonomic nervous system regulation. Dexmedetomidine was observed to have biphasic effects on haemodynamics, with an initial decrease in blood pressure at low concentrations followed by substantial increases in blood pressure and coronary vascular resistance at high concentrations. Plasma concentrations of dexmedetomidine that significantly exceeded the recommended therapeutic level did not reduce myocardial blood flow below the level that is observed with the usual therapeutic concentrations and did not induce any evident myocardial ischaemia in healthy subjects. Further, it was demonstrated that dexmedetomidine also had significant vasodilatory effects through activation of endothelial nitric oxide synthesis, and thus when the endothelial component of the blood vessel response to dexmedetomidine was inhibited, peripheral vasoconstriction was augmented. Hand vein constriction responses to α2-adrenoceptor activation by dexmedetomidine were only weakly associated with the constriction responses to α1-adrenoceptor activation, pointing to independent cellular regulation by these two adrenoceptor classes. Substantial inter-individual variation was noted in the venous constriction elicited by activation of α2-adrenoceptors by dexmedetomidine. In two study populations from two different continents, a single nucleotide polymorphism in the PRKCB gene was found to be associated with the dorsal hand vein constriction response to dexmedetomidine, suggesting that protein kinase C beta may have an important role in the vascular α2-adrenoceptor signalling pathways activated by dexmedetomidine.
Resumo:
Changes in the electroencephalography (EEG) signal have been used to study the effects of anesthetic agents on the brain function. Several commercial EEG based anesthesia depth monitors have been developed to measure the level of the hypnotic component of anesthesia. Specific anesthetic related changes can be seen in the EEG, but still it remains difficult to determine whether the subject is consciousness or not during anesthesia. EEG reactivity to external stimuli may be seen in unconsciousness subjects, in anesthesia or even in coma. Changes in regional cerebral blood flow, which can be measured with positron emission tomography (PET), can be used as a surrogate for changes in neuronal activity. The aim of this study was to investigate the effects of dexmedetomidine, propofol, sevoflurane and xenon on the EEG and the behavior of two commercial anesthesia depth monitors, Bispectral Index (BIS) and Entropy. Slowly escalating drug concentrations were used with dexmedetomidine, propofol and sevoflurane. EEG reactivity at clinically determined similar level of consciousness was studied and the performance of BIS and Entropy in differentiating consciousness form unconsciousness was evaluated. Changes in brain activity during emergence from dexmedetomidine and propofol induced unconsciousness were studied using PET imaging. Additionally, the effects of normobaric hyperoxia, induced during denitrogenation prior to xenon anesthesia induction, on the EEG were studied. Dexmedetomidine and propofol caused increases in the low frequency, high amplitude (delta 0.5-4 Hz and theta 4.1-8 Hz) EEG activity during stepwise increased drug concentrations from the awake state to unconsciousness. With sevoflurane, an increase in delta activity was also seen, and an increase in alpha- slow beta (8.1-15 Hz) band power was seen in both propofol and sevoflurane. EEG reactivity to a verbal command in the unconsciousness state was best retained with propofol, and almost disappeared with sevoflurane. The ability of BIS and Entropy to differentiate consciousness from unconsciousness was poor. At the emergence from dexmedetomidine and propofol induced unconsciousness, activation was detected in deep brain structures, but not within the cortex. In xenon anesthesia, EEG band powers increased in delta, theta and alpha (8-12Hz) frequencies. In steady state xenon anesthesia, BIS and Entropy indices were low and these monitors seemed to work well in xenon anesthesia. Normobaric hyperoxia alone did not cause changes in the EEG. All of these results are based on studies in healthy volunteers and their application to clinical practice should be considered carefully.
Resumo:
Stressignaler avkänns många gånger av membranbundna proteiner som översätter signalerna till kemisk modifiering av molekyler, ofta proteinkinaser Dessa kinaser överför de avkodade budskapen till specifika transkriptionsfaktorer genom en kaskad av sekventiella fosforyleringshändelser, transkriptionsfaktorerna aktiverar i sin tur de gener som behövs för att reagera på stressen. En av de mest kända måltavlorna för stressignaler är transkriptionsfaktor AP-1 familjemedlemen c-Jun. I denna studie har jag identifierat den nukleolära proteinet AATF som en ny regulator av c-Jun-medierad transkriptionsaktivitet. Jag visar att stresstimuli inducerar omlokalisering av AATF vilket i sin tur leder till aktivering av c-Jun. Den AATF-medierad ökningen av c-Jun-aktiviteten leder till en betydande ökning av programmerad celldöd. Parallellt har jag vidarekarakteriserat Cdk5/p35 signaleringskomplexet som tidigare har identifierats i vårt laboratorium som en viktig faktor för myoblastdifferentiering. Jag identifierade den atypiska PKCξ som en uppströms regulator av Cdk5/p35-komplexet och visar att klyvning och aktivering av Cdk5 regulatorn p35 är av fysiologisk betydelse för differentieringsprocessen och beroende av PKCξ aktivitet. Jag visar att vid induktion av differentiering fosforylerar PKCξ p35 vilket leder till calpain-medierad klyvning av p35 och därmed ökning av Cdk5-aktiviteten. Denna avhandling ökar förståelsen för de regulatoriska mekanismer som styr c-Jun-transkriptionsaktiviteten och c-Jun beroende apoptos genom att identifiera AATF som en viktig faktor. Dessutom ger detta arbete nya insikter om funktionen av Cdk5/p35-komplexet under myoblastdifferentiering och identifierar PKCξ som en uppströms regulator av Cdk5 aktivitet och myoblast differentiering.