19 resultados para 449
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Puhe
Resumo:
Dedicatio: Pierre Adolph Ekorn [ransk. pr.].
Resumo:
Soitinnus: orkesteri.
Resumo:
Alnumycin A is an aromatic pyranonaphthoquinone (PNQ) polyketide closely related to the model compound actinorhodin. While some PNQ polyketides are glycosylated, alnumycin A contains a unique sugar-like dioxane moiety. This unusual structural feature made alnumycin A an interesting research target, since no information was available about its biosynthesis. Thus, the main objective of the thesis work became to identify the steps and the enzymes responsible for the biosynthesis of the dioxane moiety. Cloning, sequencing and heterologous expression of the complete alnumycin gene cluster from Streptomyces sp. CM020 enabled the inactivation of several alnumycin biosynthetic genes and preliminary identification of the gene products responsible for pyran ring formation, quinone formation and dioxane biosynthesis. The individual deletions of the genes resulted in the production of several novel metabolites, which in many cases turned out to be pathway intermediates and could be used for stepwise enzymatic reconstruction of the complete dioxane biosynthetic pathway in vitro. Furthermore, the in vitro reactions with purified alnumycin biosynthetic enzymes resulted in the production of other novel compounds, both pathway intermediates and side products. Identification and molecular level studies of the enzymes AlnA and AlnB catalyzing the first step of dioxane biosynthesis – an unusual C-ribosylation step – led to a mechanistic proposal for the C-ribosylation of the polyketide aglycone. The next step on the dioxane biosynthetic pathway was found to be the oxidative conversion of the attached ribose into a highly unusual dioxolane unit by Aln6 belonging to an uncharacterized protein family, which unexpectedly occurred without any apparent cofactors. Finally, the last step of the pathway was found to be catalyzed by the NADPH-dependent reductase Aln4, which is able to catalyze the conversion of the formed dioxolane into a dioxane moiety. The work presented here and the knowledge gained of the enzymes involved in dioxane biosynthesis enables their use in the rational design of novel compounds containing C–C bound ribose, dioxolane and dioxane moieties.
Resumo:
The aim of this report is to describe the current status of the waste-to-energy chain in the province of Northern Savonia in Finland. This work is part of the Baltic Sea Region Programme project Remowe-Regional Mobilizing of Sustainable Waste-to-Energy Production (2009-2012). Partnering regions across Baltic Sea countries have parallelly investigated the current status, bottle-necks and needs for development in their regions. Information about the current status is crucial for the further work within the Remowe project, e.g. in investigating the possible future status in target regions. Ultimate result from the Northern Savonia point of view will be a regional model which utilizes all available information and facilitates decision-making concerning energy utilization of waste. The report contains information on among others: - waste management system (sources, amounts, infrastructure) - energy system (use, supply, infrastructure) - administrative structure and legislation - actors and stakeholders in the waste-to-energy field, including interest and development ideas The current status of the regions will be compared in a separate Remowe report, with the focus on finding best practices that could be transferred among the regions. In this report, the current status has been defined as 2006-2009. In 2009, the municipal waste amount per capita was 479 kg/inhabitant in Finland. Industrial waste amounted 3550 kg/inhabitant, respectively. The potential bioenergy from biodegradable waste amounts 1 MWh/inhabitant in Northern Savonia. This figure includes animal manure, crops that would be suitable for energy use, sludge from municipal sewage treatment plants and separately collected biowaste. A key strategy influencing also to Remowe work is the waste plan for Eastern Finland. Currently there operate two digestion plants in Northern Savonia: Lehtoniemi municipal sewage treatment sludge digestion plant of Kuopion Vesi and the farm-scale research biogas plant of Agrifood Research Finland in Maaninka. Moreover, landfill gas is collected to energy use from Heinälamminrinne waste management centre and Silmäsuo closed landfill site, both belonging to Jätekukko Oy. Currently there is no thermal utilization of waste in Northern Savonia region. However, Jätekukko Oy is pretreating mixed waste and delivering refuse derived fuel (RDF) to Southern Finland to combustion. There is a strong willingness among seven regional waste management companies in Eastern Finland to build a waste incineration plant to Riikinneva waste management centre near city of Varkaus. The plant would use circulating fluidized bed (CFB) boiler. This would been a clear boost in waste-to-energy utilization in Northern Savonia and in many surrounding regions.
Resumo:
Forest biomass represents a geographically distributed feedstock, and geographical location affects the greenhouse gas (GHG) performance of a given forest-bioenergy system in several ways. For example, biomass availability, forest operations, transportation possibilities and the distances involved, biomass end-use possibilities, fossil reference systems, and forest carbon balances all depend to some extent on location. The overall objective of this thesis was to assess the GHG emissions derived from supply and energy-utilization chains of forest biomass in Finland, with a specific focus on the effect of location in relation to forest biomass’s availability and the transportation possibilities. Biomass availability and transportation-network assessments were conducted through utilization of geographical information system methods, and the GHG emissions were assessed by means of lifecycle assessment. The thesis is based on four papers in which forest biomass supply on industrial scale was assessed. The feedstocks assessed in this thesis include harvesting residues, smalldiameter energy wood and stumps. The principal implication of the findings in this thesis is that in Finland, the location and availability of biomass in the proximity of a given energyutilization or energy-conversion plant is not a decisive factor in supply-chain GHG emissions or the possible GHG savings to be achieved with forest-biomass energy use. Therefore, for the greatest GHG reductions with limited forest-biomass resources, energy utilization of forest biomass in Finland should be directed to the locations where most GHG savings are achieved through replacement of fossil fuels. Furthermore, one should prioritize the types of forest biomass with the lowest direct supply-chain GHG emissions (e.g., from transport and comminution) and the lowest indirect ones (in particular, soil carbon-stock losses), regardless of location. In this respect, the best combination is to use harvesting residues in combined heat and power production, replacing peat or coal.
Resumo:
Kirjallisuusarvostelu