4 resultados para 2D synchrosqueezed transforms

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis studies gray-level distance transforms, particularly the Distance Transform on Curved Space (DTOCS). The transform is produced by calculating distances on a gray-level surface. The DTOCS is improved by definingmore accurate local distances, and developing a faster transformation algorithm. The Optimal DTOCS enhances the locally Euclidean Weighted DTOCS (WDTOCS) with local distance coefficients, which minimize the maximum error from the Euclideandistance in the image plane, and produce more accurate global distance values.Convergence properties of the traditional mask operation, or sequential localtransformation, and the ordered propagation approach are analyzed, and compared to the new efficient priority pixel queue algorithm. The Route DTOCS algorithmdeveloped in this work can be used to find and visualize shortest routes between two points, or two point sets, along a varying height surface. In a digital image, there can be several paths sharing the same minimal length, and the Route DTOCS visualizes them all. A single optimal path can be extracted from the route set using a simple backtracking algorithm. A new extension of the priority pixel queue algorithm produces the nearest neighbor transform, or Voronoi or Dirichlet tessellation, simultaneously with the distance map. The transformation divides the image into regions so that each pixel belongs to the region surrounding the reference point, which is nearest according to the distance definition used. Applications and application ideas for the DTOCS and its extensions are presented, including obstacle avoidance, image compression and surface roughness evaluation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis deals with distance transforms which are a fundamental issue in image processing and computer vision. In this thesis, two new distance transforms for gray level images are presented. As a new application for distance transforms, they are applied to gray level image compression. The new distance transforms are both new extensions of the well known distance transform algorithm developed by Rosenfeld, Pfaltz and Lay. With some modification their algorithm which calculates a distance transform on binary images with a chosen kernel has been made to calculate a chessboard like distance transform with integer numbers (DTOCS) and a real value distance transform (EDTOCS) on gray level images. Both distance transforms, the DTOCS and EDTOCS, require only two passes over the graylevel image and are extremely simple to implement. Only two image buffers are needed: The original gray level image and the binary image which defines the region(s) of calculation. No other image buffers are needed even if more than one iteration round is performed. For large neighborhoods and complicated images the two pass distance algorithm has to be applied to the image more than once, typically 3 10 times. Different types of kernels can be adopted. It is important to notice that no other existing transform calculates the same kind of distance map as the DTOCS. All the other gray weighted distance function, GRAYMAT etc. algorithms find the minimum path joining two points by the smallest sum of gray levels or weighting the distance values directly by the gray levels in some manner. The DTOCS does not weight them that way. The DTOCS gives a weighted version of the chessboard distance map. The weights are not constant, but gray value differences of the original image. The difference between the DTOCS map and other distance transforms for gray level images is shown. The difference between the DTOCS and EDTOCS is that the EDTOCS calculates these gray level differences in a different way. It propagates local Euclidean distances inside a kernel. Analytical derivations of some results concerning the DTOCS and the EDTOCS are presented. Commonly distance transforms are used for feature extraction in pattern recognition and learning. Their use in image compression is very rare. This thesis introduces a new application area for distance transforms. Three new image compression algorithms based on the DTOCS and one based on the EDTOCS are presented. Control points, i.e. points that are considered fundamental for the reconstruction of the image, are selected from the gray level image using the DTOCS and the EDTOCS. The first group of methods select the maximas of the distance image to new control points and the second group of methods compare the DTOCS distance to binary image chessboard distance. The effect of applying threshold masks of different sizes along the threshold boundaries is studied. The time complexity of the compression algorithms is analyzed both analytically and experimentally. It is shown that the time complexity of the algorithms is independent of the number of control points, i.e. the compression ratio. Also a new morphological image decompression scheme is presented, the 8 kernels' method. Several decompressed images are presented. The best results are obtained using the Delaunay triangulation. The obtained image quality equals that of the DCT images with a 4 x 4

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis studies properties of transforms based on parabolic scaling, like Curvelet-, Contourlet-, Shearlet- and Hart-Smith-transform. Essentially, two di erent questions are considered: How these transforms can characterize H older regularity and how non-linear approximation of a piecewise smooth function converges. In study of Hölder regularities, several theorems that relate regularity of a function f : R2 → R to decay properties of its transform are presented. Of particular interest is the case where a function has lower regularity along some line segment than elsewhere. Theorems that give estimates for direction and location of this line, and regularity of the function are presented. Numerical demonstrations suggest also that similar theorems would hold for more general shape of segment of low regularity. Theorems related to uniform and pointwise Hölder regularity are presented as well. Although none of the theorems presented give full characterization of regularity, the su cient and necessary conditions are very similar. Another theme of the thesis is the study of convergence of non-linear M ─term approximation of functions that have discontinuous on some curves and otherwise are smooth. With particular smoothness assumptions, it is well known that squared L2 approximation error is O(M-2(logM)3) for curvelet, shearlet or contourlet bases. Here it is shown that assuming higher smoothness properties, the log-factor can be removed, even if the function still is discontinuous.