6 resultados para 220308 Logic
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Tutkimuksen tavoitteena oli selvittää ohjelmistotoimialan avaintekijöitä, jotka vaikuttavat yrityksen ansaintalogiikkaan sekä lisätä tietoisuutta ansaintalogiikan muodostumisesta pienissä ja keskisuurissa ohjelmistoyrityksissä. Tutkimuksen teoreettisessa osassa keskityttiin tarkastelemaan ansaintalogiikan, strategian ja liiketoimintamallin käsitteiden suhteita sekä arvioitiin toimialan osatekijöiden, hinnoitteluperiaatteiden ja ansaintamallien vaikutusta ansainnan muodostumiseen ohjelmistotoimialalla. Ohjelmistotuote ja - palveluliiketoimintaa koskien oli merkityksellistä tutkia tuotteistamisasteen ja arvoketjujen vaikutusta ansaintalogiikan muodostumisessa sekä esitellä erilaisia, tyypillisiä ohjelmistotoimialalla käytettäviä hinnoittelumenetelmiä. Työn empiirisessä osassa tarkasteltiin 23 suomalaisen ohjelmistoalan yrityksen ansaintalogiikkaa. Tiedot kerättiin haastatteluin ja analysoitiin laadullisen tutkimuksen keinoin. Tutkimustulokset korostivat ansaintalogiikan 'epämääräisyyttä' terminä mutta osoittivat, että ydinliiketoimintaan keskittyminen, tuote-, palvelu-, tai projektiliiketoiminnan osaaminen, tuotteistusaste ja kanavavalinnat ovat avaintekijöitä ansaintalogiikanmuodostumisessa. Ansaintalogiikan muodostamiseen liittyy paljon yrityksen sisäisiä ja ulkoisia haasteita sekä muutospaineita, eikä ohjelmistotoimialalla ole todennettavissa yhtä yleismaailmallista, menestyksen takaavaa ansaintalogiikkaa.
Resumo:
Fuzzy set theory and Fuzzy logic is studied from a mathematical point of view. The main goal is to investigatecommon mathematical structures in various fuzzy logical inference systems and to establish a general mathematical basis for fuzzy logic when considered as multi-valued logic. The study is composed of six distinct publications. The first paper deals with Mattila'sLPC+Ch Calculus. THis fuzzy inference system is an attempt to introduce linguistic objects to mathematical logic without defining these objects mathematically.LPC+Ch Calculus is analyzed from algebraic point of view and it is demonstratedthat suitable factorization of the set of well formed formulae (in fact, Lindenbaum algebra) leads to a structure called ET-algebra and introduced in the beginning of the paper. On its basis, all the theorems presented by Mattila and many others can be proved in a simple way which is demonstrated in the Lemmas 1 and 2and Propositions 1-3. The conclusion critically discusses some other issues of LPC+Ch Calculus, specially that no formal semantics for it is given.In the second paper the characterization of solvability of the relational equation RoX=T, where R, X, T are fuzzy relations, X the unknown one, and o the minimum-induced composition by Sanchez, is extended to compositions induced by more general products in the general value lattice. Moreover, the procedure also applies to systemsof equations. In the third publication common features in various fuzzy logicalsystems are investigated. It turns out that adjoint couples and residuated lattices are very often present, though not always explicitly expressed. Some minor new results are also proved.The fourth study concerns Novak's paper, in which Novak introduced first-order fuzzy logic and proved, among other things, the semantico-syntactical completeness of this logic. He also demonstrated that the algebra of his logic is a generalized residuated lattice. In proving that the examination of Novak's logic can be reduced to the examination of locally finite MV-algebras.In the fifth paper a multi-valued sentential logic with values of truth in an injective MV-algebra is introduced and the axiomatizability of this logic is proved. The paper developes some ideas of Goguen and generalizes the results of Pavelka on the unit interval. Our proof for the completeness is purely algebraic. A corollary of the Completeness Theorem is that fuzzy logic on the unit interval is semantically complete if, and only if the algebra of the valuesof truth is a complete MV-algebra. The Compactness Theorem holds in our well-defined fuzzy sentential logic, while the Deduction Theorem and the Finiteness Theorem do not. Because of its generality and good-behaviour, MV-valued logic can be regarded as a mathematical basis of fuzzy reasoning. The last paper is a continuation of the fifth study. The semantics and syntax of fuzzy predicate logic with values of truth in ana injective MV-algerba are introduced, and a list of universally valid sentences is established. The system is proved to be semanticallycomplete. This proof is based on an idea utilizing some elementary properties of injective MV-algebras and MV-homomorphisms, and is purely algebraic.
Resumo:
This bachelor’s thesis is a part of the research project realized in the summer 2011 in Lappeenranta University of Technology. The goal of the project was to develop an automation concept for controlling the electrically excited synchronous motor. Thesis concentrates on the implementation of the automation concept into the ABB’s AC500 programmable logic enviroment. The automation program was developed as a state machine with the ABB’s PS501 Control Builder software. For controlling the automation program is developed a fieldbus control and with CodeSys Visualization Tool a local control with control panel. The fieldbus control is done to correspond the ABB drives communication profile and the local control is implemented with a function block which feeds right control words into the statemachine. A field current control of the synchronous motor is realized as a method presented in doctoral thesis of Olli Pyrhönen (Pyrhönen 1998). The Method combines stator flux and torque based openloop control and power factor based feedback control.