19 resultados para 020403 Condensed Matter Modelling and Density Functional Theory

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modifiering av metallytor med starkt adsorberade kirala organiska molekyler är eventuellt den mest relevanta teknik man vet i dag för att skapa kirala ytor. Den kan utnyttjas i katalytisk produktion av enantiomeriskt rena kirala föreningar som behövs t.ex. som läkemedel och aromkemikalier. Trots många fördelar av asymmetrisk heterogen katalys jämfört med andra sätt för att få kirala föreningar, har den ändå inte blivit ett allmänt verktyg för storskaliga tillämpningar. Detta beror t.ex. på brist på djupare kunskaper i katalytiska reaktionsmekanismer och ursprunget för asymmetrisk induktion. I denna studie användes molekylmodelleringstekniker för att studera asymmetriska, heterogena katalytiska system, speciellt hydrering av prokirala karbonylföreningar till motsvarande kirala alkoholer på cinchona-alkaloidmodifierade Pt-katalysatorer. 1-Fenyl-1,2-propandion (PPD) och några andra föreningar, som innehåller en prokiral C=O-grupp, användes som reaktanter. Konformationer av reaktanter och cinchona-alkaloider (som kallas modifierare) samt vätebundna 1:1-komplex mellan dem studerades i gas- och lösningsfas med metoder som baserar sig på vågfunktionsteori och täthetsfunktionalteori (DFT). För beräkningen av protonaffiniteter användes också högst noggranna kombinationsmetoder såsom G2(MP2). Den relativa populationen av modifierarnas konformationer varierade som funktion av modifieraren, dess protonering och lösningsmedlet. Flera reaktant–modifierareinteraktionsgeometrier beaktades. Slutsatserna på riktning av stereoselektivitet baserade sig på den relativa termodynamiska stabiliteten av de diastereomeriska reaktant–modifierare-komplexen samt energierna hos π- och π*-orbitalerna i den reaktiva karbonylgruppen. Adsorption och reaktioner på Pt(111)-ytan betraktades med DFT. Regioselektivitet i hydreringen av PPD och 2,3-hexandion kunde förklaras med molekyl–yta-interaktioner. Storleken och formen av klustret använt för att beskriva Pt-ytan inverkade inte bara på adsorptionsenergierna utan också på de relativa stabiliteterna av olika adsorptionsstrukturer av en molekyl. Populationerna av modifierarnas konformationer i gas- och lösningsfas korrelerade inte med populationerna på Pt-ytan eller med enantioselektiviteten i hydreringen av PPD på Pt–cinchona-katalysatorer. Vissa modifierares konformationer och reaktant–modifierare-interaktionsgeometrier var stabila bara på metallytan. Teoretiskt beräknade potentialenergiprofiler för hydrering av kirala α-hydroxiketoner på Pt implicerade preferens för parvis additionsmekanism för väte och selektiviteter i harmoni med experimenten. De uppnådda resultaten ökar uppfattningen om kirala heterogena katalytiska system och kunde därför utnyttjas i utvecklingen av nya, mera aktiva och selektiva kirala katalysatorer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work the adsorption mechanisms of atomic and molecular oxygen on Cu(100) surface are studied using ab initio simulation methods. Through the atomistic scale under-standing of the elementary oxidation processes we can further understand the large-scale oxidation. Copper is a material widely used in industry which makes it an interesting subject, and also understanding the oxidation of copper helps us understand the oxidation mechanism of other metals. First we have a look on some theory on surface alloys in general and behaviour of Ag on Cu(100) surface. After that the physical background there is behind the methods of density functional calculations are discussed, and some methods, namely potential energy surfaces and molecular dynamics, are introduced. Then there is a brief look on the numerical details used in the calculations, and after that, the results of the simulations are exhibited.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thin-film photovoltaic solar cells based on the Cu(In1−xGax)Se2 (CIGS) alloys have attracted more and more attention due to their large optical absorption coefficient, long term stability, low cost, and high efficiency. Modern theoretical studies of this material with first-principles calculations can provide accurate description of the electronic structure and yield results in close agreement with experimental values, but takes a large amount of calculation time. In this work, we use first-principles calculations based on the computationally affordable meta- generalized gradient approximation of the density-functional theory to investigate electronic and structural properties of the CIGS alloys. We report on the simulation of the lattice parameters and band gaps, as a function of chemical composition. The obtained results were found to be in a good agreement with the available experimental data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this research is to develop a tool that could allow to organize coopetitional relationships between organizations on the basis of two-sided Internet platform. The main result of current master thesis is a detailed description of the concept of the lead generating internet platform-based coopetition. With the tools of agent-based modelling and simulation, there were obtained results that could be used as a base for suggestion that the developed concept is able to cause a positive effect on some particular industries (e.g. web-design studios market) and potentially can bring some benefits and extra profitability for most companies that operate on this particular industry. Also on the basis of the results it can be assumed that the developed instrument is also able to increase the degree of transparency of the market to which it is applied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present thesis in focused on the minimization of experimental efforts for the prediction of pollutant propagation in rivers by mathematical modelling and knowledge re-use. Mathematical modelling is based on the well known advection-dispersion equation, while the knowledge re-use approach employs the methods of case based reasoning, graphical analysis and text mining. The thesis contribution to the pollutant transport research field consists of: (1) analytical and numerical models for pollutant transport prediction; (2) two novel techniques which enable the use of variable parameters along rivers in analytical models; (3) models for the estimation of pollutant transport characteristic parameters (velocity, dispersion coefficient and nutrient transformation rates) as functions of water flow, channel characteristics and/or seasonality; (4) the graphical analysis method to be used for the identification of pollution sources along rivers; (5) a case based reasoning tool for the identification of crucial information related to the pollutant transport modelling; (6) and the application of a software tool for the reuse of information during pollutants transport modelling research. These support tools are applicable in the water quality research field and in practice as well, as they can be involved in multiple activities. The models are capable of predicting pollutant propagation along rivers in case of both ordinary pollution and accidents. They can also be applied for other similar rivers in modelling of pollutant transport in rivers with low availability of experimental data concerning concentration. This is because models for parameter estimation developed in the present thesis enable the calculation of transport characteristic parameters as functions of river hydraulic parameters and/or seasonality. The similarity between rivers is assessed using case based reasoning tools, and additional necessary information can be identified by using the software for the information reuse. Such systems represent support for users and open up possibilities for new modelling methods, monitoring facilities and for better river water quality management tools. They are useful also for the estimation of environmental impact of possible technological changes and can be applied in the pre-design stage or/and in the practical use of processes as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis discusses the regulation of foodstuffs and medicines, and particularly the regulation of functional foods. Legal systems investigated are the EU and China. Both are members of the WTO and Codex Alimentarius, which binds European and Chinese rules together. The study uses three Chinese berries as case examples of how product development faces regulation in practice. The berries have traditional uses as herbal medicines. Europe and China have similar nutrition problems to be resolved, such as obesity, cardiovascular disease, and diabetes. The three berries might be suitable raw materials for functional foods. Consumer products with health-enhancing functions, such as lowering blood pressure, might legally be classifi ed either as foodstuffs or medicines. The classifi cation will depend on functions and presentation of the product. In our opinion, food and medicine regulation should come closer together so the classifi cation issue would no longer be an issue. Safety of both foodstuffs and medicines is strictly regulated. With medicines, safety is a more relative concept, where benefi ts of the product are compared to side-effects in thorough scientifi c tests and trials. Foods, on the other hand, are not allowed to have side-effects. Hygiene rules and rules on the use of chemicals apply. In China, food safety is currently at focus as China has had several severe food scandals. Newly developed foods are called novel foods, and are specifi cally regulated. The current European novel food regulation from 1997 treats traditional third country products as novel. The Chinese regulation of 2007 also defi nes novel foods as something unfamiliar to a Chinese consumer. The concepts of novel food thus serve a protectionist purpose. As regards marketing, foods are allowed to bear health claims, whereas medicines bear medicinal claims. The separation is legally strict: foods are not to be presented as having medicinal functions. European nutrition and health claim regulation exists since 2006. China also has its regulation on health foods, listing the permitted claims and how to substantiate them. Health claims are allowed only on health foods. The European rules on medicines include separate categories for herbal medicines, traditional herbal medicines, and homeopathic medicines, where there are differing requirements for scientifi c substantiation. The scientifi c and political grounds for the separate categories provoke criticism. At surface, the Chinese legal system seems similar to the European one. To facilitate trade, China has enacted modern laws. Laws are needed as the country moves from planned economy to market economy: ‘rule of law’ needs to replace ‘rule of man’. Instead of being citizens, Chinese people long were subordinates to the Emperor. Confucius himself advised to avoid confl ict. Still, Chinese people do not and cannot always trust the legal system, as laws are enforced in an inconsistent manner, and courts are weak. In China, there have been problems with confl icting national and local laws. In Europe, the competence of the EU vs. the competence of the Member States is still not resolved, even though the European Commission often states that free trade requires harmonisation. Food and medicine regulation is created by international organisations, food and medicine control agencies, standards agencies, companies and their organisations. Regulation can be divided in ‘hard law’ and ‘soft law’. One might claim that hard law is in crisis, as soft law is gaining importance. If law is out of fashion, regulation certainly isn’t. In the future, ‘law’ might mean a process where rules and incentives are created by states, NGOs, companies, consumers, and other stakeholders. ‘Law’ might thus refer to a constant negotiation between public and private actors. Legal principles such as transparency, equal treatment, and the right to be heard would still be important.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study we discuss the atomic level phenomena on transition metal surfaces. Transition metals are widely used as catalysts in industry. Therefore, reactions occuring on transition metal surfaces have large industrial intrest. This study addresses problems in very small size and time scales, which is an important part in the overall understanding of these phenomena. The publications of this study can be roughly divided into two categories: The adsorption of an O2 molecule to a surface, and surface structures of preadsorbed atoms. These two categories complement each other, because in the realistic case there are always some preadsorbed atoms at the catalytically active surfaces. However, all transition metals have an active d-band, and this study is also a study of the in uence of the active d-band on other atoms. At the rst part of this study we discuss the adsorption and dissociation of an O2 molecule on a clean stepped palladium surface and a smooth palladium surface precovered with sulphur and oxygen atoms. We show how the reactivity of the surface against the oxygen molecule varies due to the geometry of the surface and preadsorbed atoms. We also show how the molecular orbitals of the oxygen molecule evolve when it approaches the di erent sites on the surface. In the second part we discuss the surface structures of transition metal surfaces. We study the structures that are intresting on account of the Rashba e ect and charge density waves. We also study the adsorption of suphur on a gold surface, and surface structures of it. In this study we use ab-initio based density functional theory methods to simulate the results. We also compare the results of our methods to the results obtained with the Low-Energy-Electron-Difraction method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Persistent luminescence materials can store energy from solar radiation or artificial lighting and release it over a period of several hours without a continuous excitation source. These materials are widely used to improve human safety in emergency and traffic signalization. They can also be utilized in novel applications including solar cells, medical diagnostics, radiation detectors and structural damage sensors. The development of these materials is currently based on methods based on trial and error. The tailoring of new materials is also hindered by the lack of knowledge on the role of their intrinsic and extrinsic lattice defects in the appropriate mechanisms. The goal of this work was to clarify the persistent luminescence mechanisms by combining ab initio density functional theory (DFT) calculations with selected experimental methods. The DFT approach enables a full control of both the nature of the defects and their locations in the host lattice. The materials studied in the present work, the distrontium magnesium disilicate (Sr2MgSi2O7) and strontium aluminate (SrAl2O4) are among the most efficient persistent luminescence hosts when doped with divalent europium Eu2+ and co-doped with trivalent rare earth ions R3+ (R: Y, La-Nd, Sm, Gd-Lu). The polycrystalline materials were prepared with the solid state method and their structural and phase purity was confirmed by X-ray powder diffraction. Their local crystal structure was studied by high-resolution transmission electron microscopy. The crystal and electronic structure of the nondoped as well as Eu2+, R2+/3+ and other defect containing materials were studied using DFT calculations. The experimental trap depths were obtained using thermoluminescence (TL) spectroscopy. The emission and excitation of Sr2MgSi2O7:Eu2+,Dy3+ were also studied. Significant modifications in the local crystal structure due to the Eu2+ ion and lattice defects were found by the experimental and DFT methods. The charge compensation effects induced by the R3+ co-doping further increased the number of defects and distortions in the host lattice. As for the electronic structure of Sr2MgSi2O7 and SrAl2O4, the experimental band gap energy of the host materials was well reproduced by the calculations. The DFT calculated Eu2+ and R2+/3+ 4fn as well as 4fn-15d1 ground states in the Sr2MgSi2O7 band structure provide an independent verification for an empirical model which is constructed using rather sparse experimental data for the R3+ and especially the R2+ ions. The intrinsic and defect induced electron traps were found to act together as energy storage sites contributing to the materials’ efficient persistent luminescence. The calculated trap energy range agreed with the trap structure of Sr2MgSi2O7 obtained using TL measurements. More experimental studies should be carried out for SrAl2O4 to compare with the DFT calculations. The calculated and experimental results show that the electron traps created by both the rare earth ions and vacancies are modified due to the defect aggregation and charge compensation effects. The relationships between this modification and the energy storage properties of the solid state materials are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computational material science with the Density Functional Theory (DFT) has recently gained a method for describing, for the first time the non local bonding i.e., van der Waals (vdW) bonding. The newly proposed van der Waals-Density Functional (vdW-DF) is employed here to address the role of non local interactions in the case of H2 adsorption on Ru(0001) surface. The later vdW-DF2 implementation with the DFT code VASP (Vienna Ab-initio Simulation Package) is used in this study. The motivation for studying H2 adsorption on ruthenium surface arose from the interest to hydrogenation processes. Potential energy surface (PES) plots are created for adsorption sites top, bridge, fcc and hcp, employing the vdW-DF2 functional. The vdW-DF yields 0.1 eV - 0.2 eV higher barriers for the dissociation of the H2 molecule; the vdW-DF seems to bind the H2 molecule more tightly together. Furthermore, at the top site, which is found to be the most reactive, the vdW functional suggests no entrance barrier or in any case smaller than 0.05 eV, whereas the corresponding calculation without the vdW-DF does. Ruthenium and H2 are found to have the opposite behaviors with the vdW-DF; Ru lattice constants are overestimated while H2 bond length is shorter. Also evaluation of the CPU time demand of the vdW-DF2 is done from the PES data. From top to fcc sites the vdW-DF computational time demand is larger by 4.77 % to 20.09 %, while at the hcp site it is slightly smaller. Also the behavior of a few exchange correlation functionals is investigated along addressing the role of vdW-DF. Behavior of the different functionals is not consistent between the Ru lattice constants and H2 bond lengths. It is thus difficult to determine the quality of a particular exchange correlation functional by comparing equilibrium separations of the different elements. By comparing PESs it would be computationally highly consuming.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper is devoted to study specific aspects of heat transfer in the combustion chamber of compression ignited reciprocating internal combustion engines and possibility to directly measure the heat flux by means of Gradient Heat Flux Sensors (GHFS). A one – dimensional single zone model proposed by Kyung Tae Yun et al. and implemented with the aid of Matlab, was used to obtain approximate picture of heat flux behavior in the combustion chamber with relation to the crank angle. The model’s numerical output was compared to the experimental results. The experiment was accomplished by A. Mityakov at four stroke diesel engine Indenor XL4D. Local heat fluxes on the surface of cylinder head were measured with fast – response, high – sensitive GHFS. The comparison of numerical data with experimental results has revealed a small deviation in obtained heat flux values throughout the cycle and different behavior of heat flux curve after Top Dead Center.