141 resultados para Reactor shutdowns
Resumo:
Innovative gas cooled reactors, such as the pebble bed reactor (PBR) and the gas cooled fast reactor (GFR) offer higher efficiency and new application areas for nuclear energy. Numerical methods were applied and developed to analyse the specific features of these reactor types with fully three dimensional calculation models. In the first part of this thesis, discrete element method (DEM) was used for a physically realistic modelling of the packing of fuel pebbles in PBR geometries and methods were developed for utilising the DEM results in subsequent reactor physics and thermal-hydraulics calculations. In the second part, the flow and heat transfer for a single gas cooled fuel rod of a GFR were investigated with computational fluid dynamics (CFD) methods. An in-house DEM implementation was validated and used for packing simulations, in which the effect of several parameters on the resulting average packing density was investigated. The restitution coefficient was found out to have the most significant effect. The results can be utilised in further work to obtain a pebble bed with a specific packing density. The packing structures of selected pebble beds were also analysed in detail and local variations in the packing density were observed, which should be taken into account especially in the reactor core thermal-hydraulic analyses. Two open source DEM codes were used to produce stochastic pebble bed configurations to add realism and improve the accuracy of criticality calculations performed with the Monte Carlo reactor physics code Serpent. Russian ASTRA criticality experiments were calculated. Pebble beds corresponding to the experimental specifications within measurement uncertainties were produced in DEM simulations and successfully exported into the subsequent reactor physics analysis. With the developed approach, two typical issues in Monte Carlo reactor physics calculations of pebble bed geometries were avoided. A novel method was developed and implemented as a MATLAB code to calculate porosities in the cells of a CFD calculation mesh constructed over a pebble bed obtained from DEM simulations. The code was further developed to distribute power and temperature data accurately between discrete based reactor physics and continuum based thermal-hydraulics models to enable coupled reactor core calculations. The developed method was also found useful for analysing sphere packings in general. CFD calculations were performed to investigate the pressure losses and heat transfer in three dimensional air cooled smooth and rib roughened rod geometries, housed inside a hexagonal flow channel representing a sub-channel of a single fuel rod of a GFR. The CFD geometry represented the test section of the L-STAR experimental facility at Karlsruhe Institute of Technology and the calculation results were compared to the corresponding experimental results. Knowledge was gained of the adequacy of various turbulence models and of the modelling requirements and issues related to the specific application. The obtained pressure loss results were in a relatively good agreement with the experimental data. Heat transfer in the smooth rod geometry was somewhat under predicted, which can partly be explained by unaccounted heat losses and uncertainties. In the rib roughened geometry heat transfer was severely under predicted by the used realisable k − epsilon turbulence model. An additional calculation with a v2 − f turbulence model showed significant improvement in the heat transfer results, which is most likely due to the better performance of the model in separated flow problems. Further investigations are suggested before using CFD to make conclusions of the heat transfer performance of rib roughened GFR fuel rod geometries. It is suggested that the viewpoints of numerical modelling are included in the planning of experiments to ease the challenging model construction and simulations and to avoid introducing additional sources of uncertainties. To facilitate the use of advanced calculation approaches, multi-physical aspects in experiments should also be considered and documented in a reasonable detail.
Resumo:
The main objective of this research is to estimate and characterize heterogeneous mass transfer coefficients in bench- and pilot-scale fluidized bed processes by the means of computational fluid dynamics (CFD). A further objective is to benchmark the heterogeneous mass transfer coefficients predicted by fine-grid Eulerian CFD simulations against empirical data presented in the scientific literature. First, a fine-grid two-dimensional Eulerian CFD model with a solid and gas phase has been designed. The model is applied for transient two-dimensional simulations of char combustion in small-scale bubbling and turbulent fluidized beds. The same approach is used to simulate a novel fluidized bed energy conversion process developed for the carbon capture, chemical looping combustion operated with a gaseous fuel. In order to analyze the results of the CFD simulations, two one-dimensional fluidized bed models have been formulated. The single-phase and bubble-emulsion models were applied to derive the average gas-bed and interphase mass transfer coefficients, respectively. In the analysis, the effects of various fluidized bed operation parameters, such as fluidization, velocity, particle and bubble diameter, reactor size, and chemical kinetics, on the heterogeneous mass transfer coefficients in the lower fluidized bed are evaluated extensively. The analysis shows that the fine-grid Eulerian CFD model can predict the heterogeneous mass transfer coefficients quantitatively with acceptable accuracy. Qualitatively, the CFD-based research of fluidized bed process revealed several new scientific results, such as parametrical relationships. The huge variance of seven orders of magnitude within the bed Sherwood numbers presented in the literature could be explained by the change of controlling mechanisms in the overall heterogeneous mass transfer process with the varied process conditions. The research opens new process-specific insights into the reactive fluidized bed processes, such as a strong mass transfer control over heterogeneous reaction rate, a dominance of interphase mass transfer in the fine-particle fluidized beds and a strong chemical kinetic dependence of the average gas-bed mass transfer. The obtained mass transfer coefficients can be applied in fluidized bed models used for various engineering design, reactor scale-up and process research tasks, and they consequently provide an enhanced prediction accuracy of the performance of fluidized bed processes.
Resumo:
The interaction mean free path between neutrons and TRISO particles is simulated using scripts written in MATLAB to solve the increasing error present with an increase in the packing factor in the reactor physics code Serpent. Their movement is tracked both in an unbounded and in a bounded space. Their track is calculated, depending on the program, linearly directly using the position vectors of the neutrons and the surface equations of all the fuel particles; by dividing the space in multiple subspaces, each of which contain a fraction of the total number of particles, and choosing the particles from those subspaces through which the neutron passes through; or by choosing the particles that lie within an infinite cylinder formed on the movement axis of the neutron. The estimate from the current analytical model, based on an exponential distribution, for the mean free path, utilized by Serpent, is used as a reference result. The results from the implicit model in Serpent imply a too long mean free path with high packing factors. The received results support this observation by producing, with a packing factor of 17 %, approximately 2.46 % shorter mean free path compared to the reference model. This is supported by the packing factor experienced by the neutron, the simulation of which resulted in a 17.29 % packing factor. It was also observed that the neutrons leaving from the surfaces of the fuel particles, in contrast to those starting inside the moderator, do not follow the exponential distribution. The current model, as it is, is thus not valid in the determination of the free path lengths of the neutrons.
Resumo:
Gasification of biomass is an efficient method process to produce liquid fuels, heat and electricity. It is interesting especially for the Nordic countries, where raw material for the processes is readily available. The thermal reactions of light hydrocarbons are a major challenge for industrial applications. At elevated temperatures, light hydrocarbons react spontaneously to form higher molecular weight compounds. In this thesis, this phenomenon was studied by literature survey, experimental work and modeling effort. The literature survey revealed that the change in tar composition is likely caused by the kinetic entropy. The role of the surface material is deemed to be an important factor in the reactivity of the system. The experimental results were in accordance with previous publications on the subject. The novelty of the experimental work lies in the used time interval for measurements combined with an industrially relevant temperature interval. The aspects which are covered in the modeling include screening of possible numerical approaches, testing of optimization methods and kinetic modelling. No significant numerical issues were observed, so the used calculation routines are adequate for the task. Evolutionary algorithms gave a better performance combined with better fit than the conventional iterative methods such as Simplex and Levenberg-Marquardt methods. Three models were fitted on experimental data. The LLNL model was used as a reference model to which two other models were compared. A compact model which included all the observed species was developed. The parameter estimation performed on that model gave slightly impaired fit to experimental data than LLNL model, but the difference was barely significant. The third tested model concentrated on the decomposition of hydrocarbons and included a theoretical description of the formation of carbon layer on the reactor walls. The fit to experimental data was extremely good. Based on the simulation results and literature findings, it is likely that the surface coverage of carbonaceous deposits is a major factor in thermal reactions.
Resumo:
This thesis concentrates on the validation of a generic thermal hydraulic computer code TRACE under the challenges of the VVER-440 reactor type. The code capability to model the VVER-440 geometry and thermal hydraulic phenomena specific to this reactor design has been examined and demonstrated acceptable. The main challenge in VVER-440 thermal hydraulics appeared in the modelling of the horizontal steam generator. The major challenge here is not in the code physics or numerics but in the formulation of a representative nodalization structure. Another VVER-440 specialty, the hot leg loop seals, challenges the system codes functionally in general, but proved readily representable. Computer code models have to be validated against experiments to achieve confidence in code models. When new computer code is to be used for nuclear power plant safety analysis, it must first be validated against a large variety of different experiments. The validation process has to cover both the code itself and the code input. Uncertainties of different nature are identified in the different phases of the validation procedure and can even be quantified. This thesis presents a novel approach to the input model validation and uncertainty evaluation in the different stages of the computer code validation procedure. This thesis also demonstrates that in the safety analysis, there are inevitably significant uncertainties that are not statistically quantifiable; they need to be and can be addressed by other, less simplistic means, ultimately relying on the competence of the analysts and the capability of the community to support the experimental verification of analytical assumptions. This method completes essentially the commonly used uncertainty assessment methods, which are usually conducted using only statistical methods.
Resumo:
Tämä diplomityö tehtiin Vihdin Vesihuoltolaitoksen Nummelan jäteveden puhdistamolle. Työssä tutkittiin typenpoistoa kunnallisista jätevesistä membraanibioreaktorin (MBR) avulla. MBR:ssä yhdistyvät perinteinen aktiivilieteprosessi ja kalvosuodatus. Työn tavoite oli päästä yli 95 % typenpoistoon. Aluksi typenpoisto oli yli 80 %, kun pilot-mittakaavan MBR-laitosta operoitiin perinteisen prosessin parametrein. Typenpoistoa onnistuttiin tehostamaan nostamalla nitraattipitoisen palautuslietteen kierrätystä prosessin alkupäähän (1600 L/h) ja lisäämällä aktiivista biomassaa reaktorissa. Yli 90 % typenpoisto edellytti myös pidempää viipymäaikaa (noin kaksinkertainen perinteiseen prosessiin verrattuna). Tutkimuksessa päästiin parhaimmillaan jopa 95 % typenpoistumaan operoimalla laitteistoa pienellä typpikuormalla (0,1 kg/vrk) ja alhaisemmalla lietepitoisuudella (10 g/L). Typpikuorman noustessa (0,3 kg/vrk) typenpoistoteho laski. Tätä onnistuttiin parantamaan (yli 90 %) nostamalla biomassan määrää reaktorissa (15 g/L). Hyvän typenpoiston saavuttaminen edellytti myös suurempaa metanolin ja hapen syöttöä.
Resumo:
Työssä tutkittiin kirjallisuuden ja laboratoriomittausten avulla vaihtoehtoja kullan pelkistämiseen ja talteenottoon kultauuton takaisinuuttoliuoksista. Tavoitteena oli löytää menetelmä, jolla saadaan puhdasta kiinteää lopputuotetta ilman kullan häviöitä. Käytettyjä pelkistimiä olivat D-(+)-glukoosi, natriumboorihydridi, L-askorbiinihappo, D-(-)-isoaskorbiinihappo ja aktiivihiili. Laboratoriokokeiden perusteella D-(-)-isoaskorbiinihappo sekä aktiivihiili olivat sopivimmat pelkistimet kokeissa käytetylle kultaliuokselle. Isoaskorbiinihapolla suoritettiin panoskokeita lasireaktorissa eri alku-pH:ssa sekä erilaisilla pelkistimen ja kullan moolisuhteilla. Tulosten perusteella havaittiin pH:n ja pelkistimen ylimäärän vaikuttavan merkittävästi lopputuotteen puhtauteen. Myös redox-potentiaalia säätämällä ja happopesulla pelkistyksen jälkeen voidaan vaikuttaa lopputuotteen puhtauteen. Aktiivihiilellä suoritettiin panoskokeita adsorptiotasapainojen (latausisotermi) ja kinetiikan tutkimiseksi. Hiileen on mahdollista saada kultaa 383 mg/g kuivaa hiiltä. Suurempi lataus voitaisiin saavuttaa käyttämällä hiiltä, jolla on pienempi partikkelikoko. Kolonnikokeita tehtiin eri virtausnopeuksilla. Kolonnikokeissa kullan dynaaminen adsorptiokapasiteetti hiileen odotetusti kasvoi virtausnopeuden laskiessa. Pienin käytetty virtausnopeus oli 2,40 BV/h, jolloin kapasiteetti oli 75,4 mg/g kuivaa hiiltä (c (Au feed) = 129 mg/L). Kullasta voidaan poistaa myös kolonnipelkistyksen jälkeen epäpuhtauksia happopesulla. Isoaskorbiinihapolla pelkistyksen kinetiikka on nopea ja sillä saatiin pelkistettyä puhdasta lopputuotetta. Sekä isoaskorbiinihappo, että aktiivihiili ovat potentiaalisia menetelmiä kullan talteenottoon.
Resumo:
Heat transfer effectiveness in nuclear rod bundles is of great importance to nuclear reactor safety and economics. An important design parameter is the Critical Heat Flux (CHF), which limits the transferred heat from the fuel to the coolant. The CHF is determined by flow behaviour, especially the turbulence created inside the fuel rod bundle. Adiabatic experiments can be used to characterize the flow behaviour separately from the heat transfer phenomena in diabatic flow. To enhance the turbulence, mixing vanes are attached to spacer grids, which hold the rods in place. The vanes either make the flow swirl around a single sub-channel or induce cross-mixing between adjacent sub-channels. In adiabatic two-phase conditions an important phenomenon that can be investigated is the effect of the spacer on canceling the lift force, which collects the small bubbles to the rod surfaces leading to decreased CHF in diabatic conditions and thus limits the reactor power. Computational Fluid Dynamics (CFD) can be used to simulate the flow numerically and to test how different spacer configurations affect the flow. Experimental data is needed to validate and verify the used CFD models. Especially the modeling of turbulence is challenging even for single-phase flow inside the complex sub-channel geometry. In two-phase flow other factors such as bubble dynamics further complicate the modeling. To investigate the spacer grid effect on two-phase flow, and to provide further experimental data for CFD validation, a series of experiments was run on an adiabatic sub-channel flow loop using a duct-type spacer grid with different configurations. Utilizing the wire-mesh sensor technology, the facility gives high resolution experimental data in both time and space. The experimental results indicate that the duct-type spacer grid is less effective in canceling the lift force effect than the egg-crate type spacer tested earlier.
Resumo:
Effective control and limiting of carbon dioxide (CO₂) emissions in energy production are major challenges of science today. Current research activities include the development of new low-cost carbon capture technologies, and among the proposed concepts, chemical combustion (CLC) and chemical looping with oxygen uncoupling (CLOU) have attracted significant attention allowing intrinsic separation of pure CO₂ from a hydrocarbon fuel combustion process with a comparatively small energy penalty. Both CLC and CLOU utilize the well-established fluidized bed technology, but several technical challenges need to be overcome in order to commercialize the processes. Therefore, development of proper modelling and simulation tools is essential for the design, optimization, and scale-up of chemical looping-based combustion systems. The main objective of this work was to analyze the technological feasibility of CLC and CLOU processes at different scales using a computational modelling approach. A onedimensional fluidized bed model frame was constructed and applied for simulations of CLC and CLOU systems consisting of interconnected fluidized bed reactors. The model is based on the conservation of mass and energy, and semi-empirical correlations are used to describe the hydrodynamics, chemical reactions, and transfer of heat in the reactors. Another objective was to evaluate the viability of chemical looping-based energy production, and a flow sheet model representing a CLC-integrated steam power plant was developed. The 1D model frame was succesfully validated based on the operation of a 150 kWth laboratory-sized CLC unit fed by methane. By following certain scale-up criteria, a conceptual design for a CLC reactor system at a pre-commercial scale of 100 MWth was created, after which the validated model was used to predict the performance of the system. As a result, further understanding of the parameters affecting the operation of a large-scale CLC process was acquired, which will be useful for the practical design work in the future. The integration of the reactor system and steam turbine cycle for power production was studied resulting in a suggested plant layout including a CLC boiler system, a simple heat recovery setup, and an integrated steam cycle with a three pressure level steam turbine. Possible operational regions of a CLOU reactor system fed by bituminous coal were determined via mass, energy, and exergy balance analysis. Finally, the 1D fluidized bed model was modified suitable for CLOU, and the performance of a hypothetical 500 MWth CLOU fuel reactor was evaluated by extensive case simulations.
Resumo:
Preparative liquid chromatography is one of the most selective separation techniques in the fine chemical, pharmaceutical, and food industries. Several process concepts have been developed and applied for improving the performance of classical batch chromatography. The most powerful approaches include various single-column recycling schemes, counter-current and cross-current multi-column setups, and hybrid processes where chromatography is coupled with other unit operations such as crystallization, chemical reactor, and/or solvent removal unit. To fully utilize the potential of stand-alone and integrated chromatographic processes, efficient methods for selecting the best process alternative as well as optimal operating conditions are needed. In this thesis, a unified method is developed for analysis and design of the following singlecolumn fixed bed processes and corresponding cross-current schemes: (1) batch chromatography, (2) batch chromatography with an integrated solvent removal unit, (3) mixed-recycle steady state recycling chromatography (SSR), and (4) mixed-recycle steady state recycling chromatography with solvent removal from fresh feed, recycle fraction, or column feed (SSR–SR). The method is based on the equilibrium theory of chromatography with an assumption of negligible mass transfer resistance and axial dispersion. The design criteria are given in general, dimensionless form that is formally analogous to that applied widely in the so called triangle theory of counter-current multi-column chromatography. Analytical design equations are derived for binary systems that follow competitive Langmuir adsorption isotherm model. For this purpose, the existing analytic solution of the ideal model of chromatography for binary Langmuir mixtures is completed by deriving missing explicit equations for the height and location of the pure first component shock in the case of a small feed pulse. It is thus shown that the entire chromatographic cycle at the column outlet can be expressed in closed-form. The developed design method allows predicting the feasible range of operating parameters that lead to desired product purities. It can be applied for the calculation of first estimates of optimal operating conditions, the analysis of process robustness, and the early-stage evaluation of different process alternatives. The design method is utilized to analyse the possibility to enhance the performance of conventional SSR chromatography by integrating it with a solvent removal unit. It is shown that the amount of fresh feed processed during a chromatographic cycle and thus the productivity of SSR process can be improved by removing solvent. The maximum solvent removal capacity depends on the location of the solvent removal unit and the physical solvent removal constraints, such as solubility, viscosity, and/or osmotic pressure limits. Usually, the most flexible option is to remove solvent from the column feed. Applicability of the equilibrium design for real, non-ideal separation problems is evaluated by means of numerical simulations. Due to assumption of infinite column efficiency, the developed design method is most applicable for high performance systems where thermodynamic effects are predominant, while significant deviations are observed under highly non-ideal conditions. The findings based on the equilibrium theory are applied to develop a shortcut approach for the design of chromatographic separation processes under strongly non-ideal conditions with significant dispersive effects. The method is based on a simple procedure applied to a single conventional chromatogram. Applicability of the approach for the design of batch and counter-current simulated moving bed processes is evaluated with case studies. It is shown that the shortcut approach works the better the higher the column efficiency and the lower the purity constraints are.
Resumo:
In 2006 UPM was able to gain a level of social legitimacy that allowed it to carry out one of the largest industrial restructuring programmes in Finnish industrial history, shut down major operations in Finland and still appear to be functioning in the interests of the nation as well as itself. This study considers and examines various contexts of this shutdown with the aim of demonstrating how profoundly mediated such organizational events are though they appear to be produced primarily through strategic company decisions. The study aims to examine the processes of mediation at two levels. At one level, through close analysis of press releases and newspaper reports in local and national newspapers, the study presents a discursive analysis of the Voikkaa case. The discursive analysis focuses on providing historical contexts for understanding why this organizational event was also an occasion for reimagining the past and future of the Finnish nation; spatial contexts for understanding the differing struggles over the meaning of the event nationally and regionally; and the temporal dynamics of the media reports. At another level, the study considers and refines methods for reading and analyzing mediation in organization studies. Bringing together recent research of media text–based legitimation studies, emerging research on organizational memory and organizational death and a Foucaultian analytics of power, this work suggests that organizational research needs to be less concerned with particular typologies and narratives of shutdowns, and more curious about the processes of mediation through which organizational events are imagined and remembered.
Resumo:
Sulasuolareaktori on ydinreaktorityyppi, jota kehitettiin ensimmäisen kerran Yhdysvalloissa 1940-luvulta 1970-luvulle. Tänä aikana sulasuolatekniikkaa tutkittiin muun muassa kahden koereaktorin avulla. Vuosikymmenten hiljaiselon jälkeen kiinnostus konseptia kohtaan heräsi uudelleen 2000-luvun alussa, kun Generation IV International Forum asetti sulasuolareaktorin yhdeksi mahdolliseksi neljännen sukupolven ydinreaktorityypiksi. Sulasuolareaktori poikkeaa merkittävästi nykyisin käytössä olevista tehoreaktoreista, joiden käyttämä polttoaine on sijoitettu kiinteinä nippuina reaktorin sydämeen. Sulasuolareaktorissa polttoaine on liuotettu sulaan suolaseokseen, joka kiertää koko primääripiirissä. Suolaseos toimii siis sekä fissiilinä polttoaineena että lämmönsiirron väliaineena. Reaktorin sydämessä on hidastimena grafiittia, ja polttoainesuola saavuttaa kriittisyyden vain grafiittimoderaattorin läpi kulkiessaan. Sulasuolareaktoreihin sisältyy monia mielenkiintoisia ominaisuuksia, kuten polttoaineen käynninaikainen jälleenkäsittely sekä kevytvesireaktorien käytetyn polttoaineen kierrättäminen. Konseptin kehittäminen vaatii kuitenkin huomattavan määrän teoreettista ja kokeellista tutkimustyötä, joten sulasuolareaktoreita ei näillä näkymin odoteta olevan kaupallisessa tuotannossa vielä lähitulevaisuudessa.
Resumo:
Nopeat ydinreaktorit ovat toiminnaltaan polttoainetehokkaampia kuin nykyään laajalti käytössä olevat termiset reaktorit. Tehokkuus perustuu siihen, että nopeassa reaktorissa ei tapahdu neutronien hidastumista, jolloin ne pystyvät esimerkiksi muuntamaan luonnonuraania ja muita fertiilejä aineita fissiileiksi aineiksi. Koska reaktorissa ei saa olla hidastinta, nopea reaktori ei voi käyttää jäähdytteenään vettä, vaan on käytettävä jotain raskaampia ytimiä sisältävää jäähdytettä, kuten natriumia. Natriumin käyttö tuo mukanaan tiettyjä ongelmia, sillä se on erittäin reaktioherkkä ilman ja veden kanssa. Nopeita reaktoreita on tosin käytetty ja tutkittu jo yli 50 vuotta, ja käyttökokemusten perusteella on löydetty toimivia ratkaisuja natriumin ongelmiin. Nopean reaktorin tehokas käyttö vaatii suljetun polttoainekierron, jossa käytetystä polttoaineesta voidaan valmistaa uutta polttoainetta joko nopealle tai termiselle reaktorille. Suljetun polttoainekierron infrastruktuuri on tosin hyvin kallista, joten sen käyttöönotto on kannattavaa lähinnä infrastruktuurin jo omaavissa maissa, kuten esimerkiksi Venäjällä. Nopeaa ja kevytvesireaktoria vertaillessa tulee esille tiettyjä yhtäläisyyksiä, erityisesti säteilyturvallisuuteen ja ydinturvallisuuteen liittyvissä asioissa. Suurimmat eroavaisuudet reaktorityyppien välillä nähdään polttoainetaloudessa ja jätehuollossa.
Resumo:
Nowadays, the re-refining of the used lube oils has gained worldwide a lot of attention due to the necessity for added environmental protection and increasingly stringent environmental legislation. One of the parameters determining the quality of the produced base oils is the composition of feedstock. Estimation of the chemical composition of the used oil collected from several European locations showed that the hydrocarbon structure of the motor oil is changed insignificantly during its operation and the major part of the changes is accounted for with depleted oil additives. In the lube oil re-refining industry silicon, coming mainly from antifoaming agents, is recognized to be a contaminant generating undesired solid deposits in various locations in the re-refining units. In this thesis, a particular attention was paid to the mechanism of solid product formation during the alkali treatment process of silicon-containing used lube oils. The transformations of a model siloxane, tetramethyldisiloxane (TMDS), were studied in a batch reactor at industrially relevant alkali treatment conditions (low temperature, short reaction time) using different alkali agents. The reaction mechanism involving solid alkali metal silanolates was proposed. The experimental data obtained demonstrated that the solids were dominant products at low temperature and short reaction time. The liquid products in the low temperature reactions were represented mainly by linear siloxanes. The prolongation of reaction time resulted in reduction of solids, whereas both temperature and time increase led to dominance of cyclic products in the reaction mixture. Experiments with the varied reaction time demonstrated that the concentration of cyclic trimer being the dominant in the beginning of the reaction diminished with time, whereas the cyclic tetramer tended to increase. Experiments with lower sodium hydroxide concentration showed the same effect. In addition, a decrease of alkali agent concentration in the initial reaction mixture accelerated TMDS transformation reactions resulting in solely liquid cyclic siloxanes yields. Comparison of sodium and potassium hydroxides applied as an alkali agent demonstrated that potassium hydroxide was more efficient, since the activation energy in KOH presence was almost 2-fold lower than that for sodium hydroxide containing reaction mixture. Application of potassium hydroxide for TMDS transformation at 100° C with 3 hours reaction time resulted in 20 % decrease of solid yields compared to NaOH-containing mixture. Moreover, TMDS transformations in the presence of sodium silanolate applied as an alkali agent led to formation of only liquid products without formation of the undesired solids. On the basis of experimental data and the proposed reaction mechanism, a kinetic model was developed, which provided a satisfactory description of the experimental results. Suitability of the selected siloxane as a relevant model of industrial silicon-containing compounds was verified by investigation of the commercially available antifoam agent in base-catalyzed conditions.
Resumo:
Carbon dioxide is regarded, nowadays, as a primary anthropogenic greenhouse gas leading to global warming. Hence, chemical fixation of CO2 has attracted much attention as a possible way to manufacture useful chemicals. One of the most interesting approaches of CO2 transformations is the synthesis of organic carbonates. Since conventional production technologies of these compounds involve poisonous phosgene and carbon monoxide, there is a need to develop novel synthetic methods that would better match the principles of "Green Chemistry" towards protection of the environment and human health. Over the years, synthesis of dimethyl carbonate was under intensive investigation in the academia and industry. Therefore, this study was entirely directed towards equally important homologue of carbonic esters family namely diethyl carbonate (DEC). Novel synthesis method of DEC starting from ethanol and CO2 over heterogeneous catalysts based on ceria (CeO2) was studied in the batch reactor. However, the plausible drawback of the reaction is thermodynamic limitations. The calculated values revealed that the reaction is exothermic (ΔrHØ298K = ─ 16.6 J/ ) and does not occur spontaneously at rooms temperature (ΔrGØ 298K = 35.85 kJ/mol). Moreover, co-produced water easily shifts the reaction equilibrium towards reactants excluding achievement of high yields of the carbonate. Therefore, in-situ dehydration has been applied using butylene oxide as a chemical water trap. A 9-fold enhancement in the amount of DEC was observed upon introduction of butylene oxide to the reaction media in comparison to the synthetic method without any water removal. This result confirms that reaction equilibrium was shifted in favour of the desired product and thermodynamic boundaries of the reaction were suppressed by using butylene oxide as a water scavenger. In order to obtain insight into the reaction network, the kinetic experiments were performed over commercial cerium oxide. On the basis of the selectivity/conversion profile it could be concluded that the one-pot synthesis of diethyl carbonate from ethanol, CO2 and butylene oxide occurs via a consecutive route involving cyclic carbonate as an intermediate. Since commercial cerium oxide suffers from the deactivation problems already after first reaction cycle, in-house CeO2 was prepared applying room temperature precipitation technique. Variation of the synthesis parameters such as synthesis time, calcination temperature and pH of the reaction solution turned to have considerable influence on the physico-chemical and catalytic properties of CeO2. The increase of the synthesis time resulted in high specific surface area of cerium oxide and catalyst prepared within 50 h exhibited the highest amount of basic sites on its surface. Furthermore, synthesis under pH 11 yielded cerium oxide with the highest specific surface area, 139 m2/g, among all prepared catalysts. Moreover, CeO2─pH11 catalyst demonstrated the best catalytic activity and 2 mmol of DEC was produced at 180 oC and 9 MPa of the final reaction pressure. In addition, ceria-supported onto high specific surface area silicas MCM-41, SBA-15 and silica gel were synthesized and tested for the first time as catalysts in the synthesis of DEC. Deposition of cerium oxide on MCM-41 and SiO2 supports resulted in a substantial increase of the alkalinity of the carrier materials. Hexagonal SBA-15 modified with 20 wt % of ceria exhibited the second highest basicity in the series of supported catalysts. Evaluation of the catalytic activity of ceria-supported catalysts showed that reaction carried out over 20 wt % CeO2-SBA-15 generated the highest amount of DEC.