158 resultados para Mobile platforms
Resumo:
Paper-based analytical technologies enable quantitative and rapid analysis of analytes from various application areas including healthcare, environmental monitoring and food safety. Because paper is a planar, flexible and light weight substrate, the devices can be transported and disposed easily. Diagnostic devices are especially valuable in resourcelimited environments where diagnosis as well as monitoring of therapy can be made even without electricity by using e.g. colorimetric assays. On the other hand, platforms including printed electrodes can be coupled with hand-held readers. They enable electrochemical detection with improved reliability, sensitivity and selectivity compared with colorimetric assays. In this thesis, different roll-to-roll compatible printing technologies were utilized for the fabrication of low-cost paper-based sensor platforms. The platforms intended for colorimetric assays and microfluidics were fabricated by patterning the paper substrates with hydrophobic vinyl substituted polydimethylsiloxane (PDMS) -based ink. Depending on the barrier properties of the substrate, the ink either penetrates into the paper structure creating e.g. microfluidic channel structures or remains on the surface creating a 2D analog of a microplate. The printed PDMS can be cured by a roll-ro-roll compatible infrared (IR) sintering method. The performance of these platforms was studied by printing glucose oxidase-based ink on the PDMS-free reaction areas. The subsequent application of the glucose analyte changed the colour of the white reaction area to purple with the colour density and intensity depending on the concentration of the glucose solution. Printed electrochemical cell platforms were fabricated on paper substrates with appropriate barrier properties by inkjet-printing metal nanoparticle based inks and by IR sintering them into conducting electrodes. Printed PDMS arrays were used for directing the liquid analyte onto the predetermined spots on the electrodes. Various electrochemical measurements were carried out both with the bare electrodes and electrodes functionalized with e.g. self assembled monolayers. Electrochemical glucose sensor was selected as a proof-of-concept device to demonstrate the potential of the printed electronic platforms.
Resumo:
This thesis investigates how mobile technology usage could help to bring Information and communication technologies (ICT) to the people in developing countries. Some people in developing countries have access to use ICT while other people do not have such opportunity. This digital divide among people is present in many developing countries where computers and the Internet are difficult to access. The Internet provides information that can increase productivity and enable markets to function more efficiently. The Internet reduces information travel time and provides more efficient ways for firms and workers to operate. ICT and the Internet can provide opportunities for economic growth and productivity in developing countries. This indicates that it is very important to bridge the digital divide and increase Internet connections in developing countries. The purpose of this thesis is to investigate how can mobile technology and mobile services help to bridge the digital divide in developing countries. Theoretical background of this thesis consists of a collection of articles and reports. Theoretical material was gathered by going through literature on the digital divide, mobile technology and mobile application development. The empirical research was conducted by sending a questionnaire by email to a selection of application developers located in developing countries. The questionnaire’s purpose was to gather qualitative information concerning mobile application development in developing countries. This thesis main result suggests that mobile phones and mobile technology usage can help to bridge the digital divide in developing countries. This study finds that mobile technology provides one of the best tools that can help to bridge the digital divide in developing countries. Mobile technology can bring affordable ICT to people who do not have access to use computers. Smartphones can provide Internet connection, mobile services and mobile applications to a rapidly growing number of mobile phone users in developing countries. New low-cost smartphones empower people in developing countries to have access to information through the Internet. Mobile technology has the potential to help to bridge the digital divide in developing countries where a vast amount of people own mobile phones.
Resumo:
Esitys KDK-käytettävyystyöryhmän järjestämässä seminaarissa: Miten käyttäjien toiveet haastavat metatietokäytäntöjämme? / How users' expectations challenge our metadata practices? 30.9.2014.
Resumo:
The recent emergence of a new generation of mobile application marketplaces has changed the business in the mobile ecosystems. The marketplaces have gathered over a million applications by hundreds of thousands of application developers and publishers. Thus, software ecosystems—consisting of developers, consumers and the orchestrator—have emerged as a part of the mobile ecosystem. This dissertation addresses the new challenges faced by mobile application developers in the new ecosystems through empirical methods. By using the theories of two-sided markets and business ecosystems as the basis, the thesis assesses monetization and value creation in the market as well as the impact of electronic Word-of-Mouth (eWOM) and developer multihoming— i. e. contributing for more than one platform—in the ecosystems. The data for the study was collected with web crawling from the three biggest marketplaces: Apple App Store, Google Play and Windows Phone Store. The dissertation consists of six individual articles. The results of the studies show a gap in monetization among the studied applications, while a majority of applications are produced by small or micro-enterprises. The study finds only weak support for the impact of eWOM on the sales of an application in the studied ecosystem. Finally, the study reveals a clear difference in the multi-homing rates between the top application developers and the rest. This has, as discussed in the thesis, an impact on the future market analyses—it seems that the smart device market can sustain several parallel application marketplaces.
Resumo:
The purpose of this thesis is to examine how mobile banking and mobile payments services will change the banking sector in Finland, and what role non-bank companies from the IT and telecom industries will play in this process. The thesis consists of a literature review and a qualitative study. The literature review forms a comprehensive overview of mobile banking and mobile payments services. The qualitative research was conducted as a descriptive study, focusing on the views of bank and non-bank players. The results show that banks have a significant advantage over their IT and telecom rivals in regards to their service offering, financial buffer, and status as trustworthy institutions. The banks’ embrace of mobile financial services will change the Finnish banking sector into one, with a light branch network focused on sales power, and a heavy emphasis on new mobile devices providing service power regardless of time and place.
Resumo:
This master’s thesis has been done for Drive! –project in which a new electric motor solution for mobile working machines is developed. Generic simulation model will be used as marketing and development tool. It can be used to model a wide variety of different vehicles with and without electric motor and to show customer the difference between traditionally build vehicles and those with new electric motor solution. Customers can also use simulation model to research different solutions for their own vehicles. At the start of the project it was decided that MeVEA software would be used as main simulation program and Simulink will only be used to simulate the operation of electrical components. Development of the generic model started with the research of these two software applications, simulation models which are made with them and how these simulation models can be build faster. Best results were used for building of generic simulation model. Finished generic model can be used to produce new tractor models for real-time simulations in short notice. All information about model is collected to one datasheet which can be easily filled by the user. After datasheet is filled a script will automatically build new simulation model in seconds. At the moment generic model is capable of building simulation models for wide variety of different tractors but it can be easily altered for other vehicle types too which would also benefit greatly from electric drive solution. Those could be for example wheel loaders and harvesters.
Resumo:
Virtual environments and real-time simulators (VERS) are becoming more and more important tools in research and development (R&D) process of non-road mobile machinery (NRMM). The virtual prototyping techniques enable faster and more cost-efficient development of machines compared to use of real life prototypes. High energy efficiency has become an important topic in the world of NRMM because of environmental and economic demands. The objective of this thesis is to develop VERS based methods for research and development of NRMM. A process using VERS for assessing effects of human operators on the life-cycle efficiency of NRMM was developed. Human in the loop simulations are ran using an underground mining loader to study the developed process. The simulations were ran in the virtual environment of the Laboratory of Intelligent Machines of Lappeenranta University of Technology. A physically adequate real-time simulation model of NRMM was shown to be reliable and cost effective in testing of hardware components by the means of hardware-in-the-loop (HIL) simulations. A control interface connecting integrated electro-hydraulic energy converter (IEHEC) with virtual simulation model of log crane was developed. IEHEC consists of a hydraulic pump-motor and an integrated electrical permanent magnet synchronous motorgenerator. The results show that state of the art real-time NRMM simulators are capable to solve factors related to energy consumption and productivity of the NRMM. A significant variation between the test drivers is found. The results show that VERS can be used for assessing human effects on the life-cycle efficiency of NRMM. HIL simulation responses compared to that achieved with conventional simulation method demonstrate the advances and drawbacks of various possible interfaces between the simulator and hardware part of the system under study. Novel ideas for arranging the interface are successfully tested and compared with the more traditional one. The proposed process for assessing the effects of operators on the life-cycle efficiency will be applied for wider group of operators in the future. Driving styles of the operators can be analysed statistically from sufficient large result data. The statistical analysis can find the most life-cycle efficient driving style for the specific environment and machinery. The proposed control interface for HIL simulation need to be further studied. The robustness and the adaptation of the interface in different situations must be verified. The future work will also include studying the suitability of the IEHEC for different working machines using the proposed HIL simulation method.
Resumo:
Due to various advantages such as flexibility, scalability and updatability, software intensive systems are increasingly embedded in everyday life. The constantly growing number of functions executed by these systems requires a high level of performance from the underlying platform. The main approach to incrementing performance has been the increase of operating frequency of a chip. However, this has led to the problem of power dissipation, which has shifted the focus of research to parallel and distributed computing. Parallel many-core platforms can provide the required level of computational power along with low power consumption. On the one hand, this enables parallel execution of highly intensive applications. With their computational power, these platforms are likely to be used in various application domains: from home use electronics (e.g., video processing) to complex critical control systems. On the other hand, the utilization of the resources has to be efficient in terms of performance and power consumption. However, the high level of on-chip integration results in the increase of the probability of various faults and creation of hotspots leading to thermal problems. Additionally, radiation, which is frequent in space but becomes an issue also at the ground level, can cause transient faults. This can eventually induce a faulty execution of applications. Therefore, it is crucial to develop methods that enable efficient as well as resilient execution of applications. The main objective of the thesis is to propose an approach to design agentbased systems for many-core platforms in a rigorous manner. When designing such a system, we explore and integrate various dynamic reconfiguration mechanisms into agents functionality. The use of these mechanisms enhances resilience of the underlying platform whilst maintaining performance at an acceptable level. The design of the system proceeds according to a formal refinement approach which allows us to ensure correct behaviour of the system with respect to postulated properties. To enable analysis of the proposed system in terms of area overhead as well as performance, we explore an approach, where the developed rigorous models are transformed into a high-level implementation language. Specifically, we investigate methods for deriving fault-free implementations from these models into, e.g., a hardware description language, namely VHDL.
Resumo:
Battery consumption in mobile applications development is a very important aspect and has to be considered by all the developers in their applications. This study will present an analysis of different relevant concepts and parameters that may have impact on energy consumption of Windows Phone applications. This operating system was chosen because there is limited research even though there are related studies for Android an iOS operating systems. Furthermore, another reason is the increasing number of Windows Phone users. The objective of this research is to categorise the energy consumption parameters (e.g. use of one thread or several thread for the same output). The result for each group of experiment will be analyzed and a rule will be derived. The set of derived rules will serve as a guide for developers who intend to develop energy efficient Windows Phone applications. For each experiment, one application is created for each concept and the results are presented in two ways: a table and a chart. The table presents the duration of the experiment, the battery consumed by the experiment, the expected battery lifetime and the energy consumption, while the charts display the energy distribution based on the main threads: UI thread, application thread and network thread.
Resumo:
This study reviews the research on interaction techniques and methods that could be applied in mobile augmented reality scenarios. The review is focused on themost recent advances and considers especially the use of head-mounted displays. Inthe review process, we have followed a systematic approach, which makes the reviewtransparent, repeatable, and less prone to human errors than if it was conducted in amore traditional manner. The main research subjects covered in the review are headorientation and gaze-tracking, gestures and body part-tracking, and multimodality– as far as the subjects are related to human-computer interaction. Besides these,also a number of other areas of interest will be discussed.