104 resultados para end user computing application streaming horizon workspace portalvmware view
Resumo:
Demand for increased energy efficiency has put an immense need for novel energy efficient systems. Electrical machines are considered as a much matured technology. Further improvement in this technology needs of finding new material to incorporate in electrical machines. Progress of carbon nanotubes research over the latest decade can open a new horizon in this aspect. Commonly known as ‘magic material’, carbon nanotubes (CNTs) have promising material properties that can change considerably the course of electrical machine design. It is believed that winding material based on carbon nanotubes create the biggest hope for a giant leap of modern technology and energy efficient systems. Though carbon nanotubes (CNTs) have shown amazing properties theoretically and practically during the latest 20 years, to the best knowledge of the author, no research has been carried out to find the future possibilities of utilizing carbon nanotubes as conductors in rotating electrical machines. In this thesis, the possibilities of utilizing carbon nanotubes in electrical machines have been studied. The design changes of electrical machine upon using carbon nanotubes instead of copper have been discussed vividly. A roadmap for this carbon nanotube winding machine has been discussed from synthesis, manufacturing and operational points of view.
Resumo:
Smart phones became part and parcel of our life, where mobility provides a freedom of not being bounded by time and space. In addition, number of smartphones produced each year is skyrocketing. However, this also created discrepancies or fragmentation among devices and OSes, which in turn made an exceeding hard for developers to deliver hundreds of similar featured applications with various versions for the market consumption. This thesis is an attempt to investigate whether cloud based mobile development platforms can mitigate and eventually eliminate fragmentation challenges. During this research, we have selected and analyzed the most popular cloud based development platforms and tested integrated cloud features. This research showed that cloud based mobile development platforms may able to reduce mobile fragmentation and enable to utilize single codebase to deliver a mobile application for different platforms.
Resumo:
Several companies are trying to improve their operation efficiency by implementing an enterprise resource planning (ERP) system that makes it possible to control the resources of the company in real time. However, the success of the implementation project is not a foregone conclusion; a significant part of these projects end in a failure, one way or another. Therefore it is important to investigate ERP system implementation more closely in order to increase understanding about factors influencing ERP system success and to improve the probability of a successful ERP implementation project. Consequently, this study was initiated because a manufacturing case company wanted to review the success of their ERP implementation project. To be exact, the case company hoped to gain both information about the success of the project and insight for future implementation improvement. This study investigated ERP success specifically by examining factors that influence ERP key-user satisfaction. User satisfaction is one of the most commonly applied indicators of information system success. The research data was mainly collected by conducting theme interviews. The subjects of the interviews were six key-users of the newly implemented ERP system. The interviewees were closely involved in the implementation project. Furthermore, they act as representative users that utilize the new system in everyday business processes. The collected data was analyzed by thematizing. Both data collection and analysis were guided by a theoretical frame of reference. This frame was based on previous research on the subject. The results of the study aligned with the theoretical framework to large extent. The four principal factors influencing key-user satisfaction were change management, contractor service, key-user’s system knowledge and characteristics of the ERP product itself. One of the most significant contributions of the research is that it confirmed the existence of a connection between change management and ERP key-user satisfaction. Furthermore, it discovered two new sub-factors influencing contractor service related key-user satisfaction. In addition, the research findings indicated that in order to improve the current level of key-user satisfaction, the case company should pay special attention to system functionality improvement and enhancement of the key-users’ knowledge. During similar implementation projects in the future, it would be important to assure the success of change management and contractor service related processes.
Resumo:
This thesis reports investigations on applying the Service Oriented Architecture (SOA) approach in the engineering of multi-platform and multi-devices user interfaces. This study has three goals: (1) analyze the present frameworks for developing multi-platform and multi-devices applications, (2) extend the principles of SOA for implementing a multi-platform and multi-devices architectural framework (SOA-MDUI), (3) applying and validating the proposed framework in the context of a specific application. One of the problems addressed in this ongoing research is the large amount of combinations for possible implementations of applications on different types of devices. Usually it is necessary to take into account the operating system (OS), user interface (UI) including the appearance, programming language (PL) and architectural style (AS). Our proposed approach extended the principles of SOA using patterns-oriented design and model-driven engineering approaches. Synthesizing the present work done in these domains, this research built and tested an engineering framework linking Model-driven Architecture (MDA) and SOA approaches to developing of UI. This study advances general understanding of engineering, deploying and managing multi-platform and multi-devices user interfaces as a service.
Resumo:
Smart home implementation in residential buildings promises to optimize energy usage and save significant amount of energy simply due to a better understanding of user's energy usage profile. Apart from the energy optimisation prospects of this technology, it also aims to guarantee occupants significant amount of comfort and remote control over home appliances both at home locations and at remote places. However, smart home investment just like any other kind of investment requires an adequate measurement and justification of the economic gains it could proffer before its realization. These economic gains could differ for different occupants due to their inherent behaviours and tendencies. Thus it is pertinent to investigate the various behaviours and tendencies of occupants in different domain of interests and to measure the value of the energy savings accrued by smart home implementations in these domains of interest in order to justify such economic gains. This thesis investigates two domains of interests (the rented apartment and owned apartment) for primarily two behavioural tendencies (Finland and Germany) obtained from observation and corroborated by conducted interviews to measure the payback time and Return on Investment (ROI) of their smart home implementations. Also, similar measures are obtained for identified Australian use case. The research finding reveals that building automation for the Finnish behavioural tendencies seems to proffers a better ROI and payback time for smart home implementations.
Resumo:
Manufacturing industry has been always facing challenge to improve the production efficiency, product quality, innovation ability and struggling to adopt cost-effective manufacturing system. In recent years cloud computing is emerging as one of the major enablers for the manufacturing industry. Combining the emerged cloud computing and other advanced manufacturing technologies such as Internet of Things, service-oriented architecture (SOA), networked manufacturing (NM) and manufacturing grid (MGrid), with existing manufacturing models and enterprise information technologies, a new paradigm called cloud manufacturing is proposed by the recent literature. This study presents concepts and ideas of cloud computing and cloud manufacturing. The concept, architecture, core enabling technologies, and typical characteristics of cloud manufacturing are discussed, as well as the difference and relationship between cloud computing and cloud manufacturing. The research is based on mixed qualitative and quantitative methods, and a case study. The case is a prototype of cloud manufacturing solution, which is software platform cooperated by ATR Soft Oy and SW Company China office. This study tries to understand the practical impacts and challenges that are derived from cloud manufacturing. The main conclusion of this study is that cloud manufacturing is an approach to achieve the transformation from traditional production-oriented manufacturing to next generation service-oriented manufacturing. Many manufacturing enterprises are already using a form of cloud computing in their existing network infrastructure to increase flexibility of its supply chain, reduce resources consumption, the study finds out the shift from cloud computing to cloud manufacturing is feasible. Meanwhile, the study points out the related theory, methodology and application of cloud manufacturing system are far from maturity, it is still an open field where many new technologies need to be studied.
Resumo:
Skaalautuvien web-sivujen merkitys kasvaa nykypäivänä, koska web-sivuja katsotaan hyvin erikokoisilla ja -resoluutiosilla laitteilla. Sivujen skaalautuessa eri laitteille ei tarvitse erikseen tehdä mobiilisivuja tai perinteistä natiivia ohjelmistoa joka laitteelle, vaan yksi sivu toimii kaikilla laitteilla. Ongelmana on saada web-sovellukset toimimaan eri laitteilla, koska laitteiden selaimissa saattaa olla pieni eroja, joiden vuoksi on työlästä saada skaalautuva käyttöliittymä toimimaan kaikilla eri laitteilla. Skaalautuvien sivujen kehittämisen avuksi on luotu erilaisia käyttöliittymä- ja grafiikkakirjastoja, jotka auttavat sivun skaalautuvuuden toteuttamisessa. Kirjastoja käyttämällä säästetään kehitystyöhön käytettävää aikaa ja ulkoistetaan kirjaston ylläpito kolmannelle osapuolelle. Tällöin jää enemmän aikaa varsinaisten sovelluksen kehitystyölle. Tässä työssä tutkitaan eri käyttöliittymä- ja grafiikkakirjastovaihtoehtoja käyttöliittymän toteuttamiseksi. Työssä toteutetaan yksinkertainen verkkoseurantajärjestelmän prototyyppi ja valitaan sille skaalautuva käyttöliittymä- ja grafiikkakirjasto. Järjestelmä koostuu kolmesta osasta: käyttöliittymästä, palvelusta ja tietolähteistä, joista palvelu kerää tietoa käyttöliittymälle näytettäväksi.
Resumo:
The electricity distribution sector will face significant changes in the future. Increasing reliability demands will call for major network investments. At the same time, electricity end-use is undergoing profound changes. The changes include future energy technologies and other advances in the field. New technologies such as microgeneration and electric vehicles will have different kinds of impacts on electricity distribution network loads. In addition, smart metering provides more accurate electricity consumption data and opportunities to develop sophisticated load modelling and forecasting approaches. Thus, there are both demands and opportunities to develop a new type of long-term forecasting methodology for electricity distribution. The work concentrates on the technical and economic perspectives of electricity distribution. The doctoral dissertation proposes a methodology to forecast electricity consumption in the distribution networks. The forecasting process consists of a spatial analysis, clustering, end-use modelling, scenarios and simulation methods, and the load forecasts are based on the application of automatic meter reading (AMR) data. The developed long-term forecasting process produces power-based load forecasts. By applying these results, it is possible to forecast the impacts of changes on electrical energy in the network, and further, on the distribution system operator’s revenue. These results are applicable to distribution network and business planning. This doctoral dissertation includes a case study, which tests the forecasting process in practice. For the case study, the most prominent future energy technologies are chosen, and their impacts on the electrical energy and power on the network are analysed. The most relevant topics related to changes in the operating environment, namely energy efficiency, microgeneration, electric vehicles, energy storages and demand response, are discussed in more detail. The study shows that changes in electricity end-use may have radical impacts both on electrical energy and power in the distribution networks and on the distribution revenue. These changes will probably pose challenges for distribution system operators. The study suggests solutions for the distribution system operators on how they can prepare for the changing conditions. It is concluded that a new type of load forecasting methodology is needed, because the previous methods are no longer able to produce adequate forecasts.
Resumo:
Many-core systems provide a great potential in application performance with the massively parallel structure. Such systems are currently being integrated into most parts of daily life from high-end server farms to desktop systems, laptops and mobile devices. Yet, these systems are facing increasing challenges such as high temperature causing physical damage, high electrical bills both for servers and individual users, unpleasant noise levels due to active cooling and unrealistic battery drainage in mobile devices; factors caused directly by poor energy efficiency. Power management has traditionally been an area of research providing hardware solutions or runtime power management in the operating system in form of frequency governors. Energy awareness in application software is currently non-existent. This means that applications are not involved in the power management decisions, nor does any interface between the applications and the runtime system to provide such facilities exist. Power management in the operating system is therefore performed purely based on indirect implications of software execution, usually referred to as the workload. It often results in over-allocation of resources, hence power waste. This thesis discusses power management strategies in many-core systems in the form of increasing application software awareness of energy efficiency. The presented approach allows meta-data descriptions in the applications and is manifested in two design recommendations: 1) Energy-aware mapping 2) Energy-aware execution which allow the applications to directly influence the power management decisions. The recommendations eliminate over-allocation of resources and increase the energy efficiency of the computing system. Both recommendations are fully supported in a provided interface in combination with a novel power management runtime system called Bricktop. The work presented in this thesis allows both new- and legacy software to execute with the most energy efficient mapping on a many-core CPU and with the most energy efficient performance level. A set of case study examples demonstrate realworld energy savings in a wide range of applications without performance degradation.
Resumo:
Organizations often consider investing in a new Enterprise Resource Planning (ERP) system as a way to enhance their business processes, as it allows integrating information used by multiple different departments into a harmonized computing system. The hope of gaining significant business benefits, such as reducing operating costs, is the key reason why organizations have decided to invest in ERP systems since 1990’s. Still, all ERP projects do not end up in success, and deployment of ERP system does not necessarily guarantee the results people were waiting for. This research studies why organizations invest in ERP, but also what downsides ERP projects currently have. Additionally Enterprise Application Integrations (EAI) as next generation’s ERP solutions are studied to challenge and develop traditional ERP. The research questions are: What are the weaknesses in traditional ERP deployment in today’s business? How does the proposed next generation’s ERP answer to these weaknesses? At the beginning of the thesis, as an answer to the first research question, the basics of ERP implementation are introduced with both the pros and cons of investing in ERP. Key concepts such as IS integration and EAI are also studied. Empirical section of the thesis focuses on answering the second research question from the integration approach. A qualitative research is executed by interviewing five experienced IT professionals about EAI benefits, limitations, and problems. The thematic interview and questionnaire follow the presented ERP main elements from literature. The research shows that adopting traditional ERP includes multiple downsides, e.g. inflexibility and requiring big investments in terms of money. To avoid these critical issues, organizations could find a solution from integrations between their current IS. Based on the empirical study a new framework for the next generation’s ERP is created, consisting of a model and a framework that deal with various features regarding IS adoption. With this framework organizations can assess whether they should implement EAI or ERP. The model and framework suggest that there are multiple factors IT managers needs to consider when planning their IT investments, including their current IS, role of IT in the organization, as well as new system’s flexibility, investment level, and number of vendors. The framework created in the thesis encourages IT management to assess holistically their i) organization, ii) its IT, and iii) solution requirements in order to determine what kind of IS solution would suit their needs the best.
Resumo:
Organizations often consider investing in a new Enterprise Resource Planning (ERP) system as a way to enhance their business processes, as it allows integrating information used by multiple different departments into a harmonized computing system. The hope of gaining significant business benefits, such as reducing operating costs, is the key reason why organizations have decided to invest in ERP systems since 1990’s. Still, all ERP projects do not end up in success, and deployment of ERP system does not necessarily guarantee the results people were waiting for. This research studies why organizations invest in ERP, but also what downsides ERP projects currently have. Additionally Enterprise Application Integrations (EAI) as next generation’s ERP solutions are studied to challenge and develop traditional ERP. The research questions are: What are the weaknesses in traditional ERP deployment in today’s business? How does the proposed next generation’s ERP answer to these weaknesses? At the beginning of the thesis, as an answer to the first research question, the basics of ERP implementation are introduced with both the pros and cons of investing in ERP. Key concepts such as IS integration and EAI are also studied. Empirical section of the thesis focuses on answering the second research question from the integration approach. A qualitative research is executed by interviewing five experienced IT professionals about EAI benefits, limitations, and problems. The thematic interview and questionnaire follow the presented ERP main elements from literature. The research shows that adopting traditional ERP includes multiple downsides, e.g. inflexibility and requiring big investments in terms of money. To avoid these critical issues, organizations could find a solution from integrations between their current IS. Based on the empirical study a new framework for the next generation’s ERP is created, consisting of a model and a framework that deal with various features regarding IS adoption. With this framework organizations can assess whether they should implement EAI or ERP. The model and framework suggest that there are multiple factors IT managers needs to consider when planning their IT investments, including their current IS, role of IT in the organization, as well as new system’s flexibility, investment level, and number of vendors. The framework created in the thesis encourages IT management to assess holistically their i) organization, ii) its IT, and iii) solution requirements in order to determine what kind of IS solution would suit their needs the best.
Resumo:
Human-Centered Design (HCD) is a well-recognized approach to the design of interactive computing systems that supports everyday and professional lives of people. To that end, the HCD approach put central emphasis on the explicit understanding of users and context of use by involving users throughout the entire design and development process. With mobile computing, the diversity of users as well as the variety in the spatial, temporal, and social settings of the context of use has notably expanded, which affect the effort of interaction designers to understand users and context of use. The emergence of the mobile apps era in 2008 as a result of structural changes in the mobile industry and the profound enhanced capabilities of mobile devices, further intensify the embeddedness of technology in the daily life of people and the challenges that interaction designers face to cost-efficiently understand users and context of use. Supporting interaction designers in this challenge requires understanding of their existing practice, rationality, and work environment. The main objective of this dissertation is to contribute to interaction design theories by generating understanding on the HCD practice of mobile systems in the mobile apps era, as well as to explain the rationality of interaction designers in attending to users and context of use. To achieve that, a literature study is carried out, followed by a mixed-methods research that combines multiple qualitative interview studies and a quantitative questionnaire study. The dissertation contributes new insights regarding the evolving HCD practice at an important time of transition from stationary computing to mobile computing. Firstly, a gap is identified between interaction design as practiced in research and in the industry regarding the involvement of users in context; whereas the utilization of field evaluations, i.e. in real-life environments, has become more common in academic projects, interaction designers in the industry still rely, by large, on lab evaluations. Secondly, the findings indicate on new aspects that can explain this gap and the rationality of interaction designers in the industry in attending to users and context; essentially, the professional-client relationship was found to inhibit the involvement of users, while the mental distance between practitioners and users as well as the perceived innovativeness of the designed system are suggested in explaining the inclination to study users in situ. Thirdly, the research contributes the first explanatory model on the relation between the organizational context and HCD; essentially, innovation-focused organizational strategies greatly affect the cost-effective usage of data on users and context of use. Last, the findings suggest a change in the nature of HCD in the mobile apps era, at least with universal consumer systems; evidently, the central attention on the explicit understanding of users and context of use shifts from an early requirements phase and continual activities during design and development to follow-up activities. That is, the main effort to understand users is by collecting data on their actual usage of the system, either before or after the system is deployed. The findings inform both researchers and practitioners in interaction design. In particular, the dissertation suggest on action research as a useful approach to support interaction designers and further inform theories on interaction design. With regard to the interaction design practice, the dissertation highlights strategies that encourage a more cost-effective user- and context-informed interaction design process. With the continual embeddedness of computing into people’s life, e.g. with wearable devices and connected car systems, the dissertation provides a timely and valuable view on the evolving humancentered design.
Resumo:
Today, the user experience and usability in software application are becoming a major design issue due to the adaptation of many processes using new technologies. Therefore, the study of the user experience and usability might be included in every software development project and, thus, they should be tested to get traceable results. As a result of different testing methods to evaluate the concepts, a non-expert on the topic might have doubts on which option he/she should opt for and how to interpret the outcomes of the process. This work aims to create a process to ease the whole testing methodology based on the process created by Seffah et al. and a supporting software tool to follow the procedure of these testing methods for the user experience and usability.
Resumo:
The User Experience (UX) designers are undoubtedly aware of how many UX design methods currently exist and that sometimes it becomes a problem to choose an appropriate one. What are all of methods that designers have in their “arsenal”? When can they use them? This thesis presents the research on the design methods in the contemporary context of User Experience (UX) and Innovations by using a survey approach. The study is limited to cover the domain of consumer mobile services development and provider companies around the world. The study follows 2 clear objectives: (1) to understand what design methods are currently used in that context and to what extent they are used (2) to identify at what stage according to the UX design thinking process for creating innovations they are placed. The study contributes to the research in the field of UX design and Innovations and extends the knowledge in that field together with communities’ (UXPA, SIGCHI, SIGSOFT) members’ cooperation. The research is vital due to lack of information on design practices and their application in the chosen context.