105 resultados para Thermal modelling
Resumo:
Potentiometric ion sensors are a very important subgroup of electrochemical sensors, very attractive for practical applications due to their small size, portability, low-energy consumption, relatively low cost and not changing the sample composition. They are investigated by the researchers from many fields of science. The continuous development of this field creates the necessity for a detailed description of sensor response and the electrochemical processes important in the practical applications of ion sensors. The aim of this thesis is to present the existing models available for the description of potentiometric ion sensors as well as their applicability and limitations. This includes the description of the diffusion potential occurring at the reference electrodes. The wide range of existing models, from most idealised phase boundary models to most general models, including migration, is discussed. This work concentrates on the advanced modelling of ion sensors, namely the Nernst-Planck-Poisson (NPP) model, which is the most general of the presented models, therefore the most widely applicable. It allows the modelling of the transport processes occurring in ion sensors and generating the potentiometric response. Details of the solution of the NPP model (including the numerical methods used) are shown. The comparisons between NPP and the more idealized models are presented. The applicability of the model to describe the formation of diffusion potential in reference electrode, the lower detection limit of both ion-exchanger and neutral carrier electrodes and the effect of the complexation in the membrane are discussed. The model was applied for the description of both types of electrodes, i.e. with the inner filling solution and solidcontact electrodes. The NPP model allows the electrochemical methods other than potentiometry to be described. Application of this model in Electrochemical Impedance Spectroscopy is discussed and a possible use in chrono-potentiometry is indicated. By combining the NPP model with evolutionary algorithms, namely Hierarchical Genetic Strategy (HGS), a novel method allowing the facilitation of the design of ion sensors was created. It is described in detail in this thesis and its possible applications in the field of ion sensors are indicated. Finally, some interesting effects occurring in the ion sensors (i.e. overshot response and influence of anionic sites) as well as the possible applications of NPP in biochemistry are described.
Resumo:
The tightening competition and increasing dynamism have created an emerging need for flexible asset management. This means that the changes of market demand should be responded to with adjustments in the amount of assets tied to the balance sheets of companies. On the other hand, industrial maintenance has recently experienced drastic changes, which have led to an increase in the number of maintenance networks (consisting of customer companies that buy maintenance services, as well as various supplier companies) and inter-organizational partnerships. However, the research on maintenance networks has not followed the changes in the industry. Instead, there is a growing need for new ways of collaboration between partnering companies to enhance the competitiveness of the whole maintenance network. In addition, it is more and more common for companies to pursue lean operations in their businesses. This thesis shows how flexible asset management can increase the profitability of maintenance companies and networks under dynamic operating conditions, and how the additional value can then be shared between the network partners. Firstly, I have conducted a systematic literature review to identify what kind of requirements for asset management models are set by the increasing dynamism. Then I have responded to these requirements by constructing an analytical model for flexible asset management, linking asset management to the profitability and financial state of a company. The thesis uses the model to show how flexible asset management can increase profitability in maintenance companies and networks, and how the created value can be shared in the networks to reach a win-win situation. The research indicates that the existing models for asset management are heterogeneous by nature due to the various definitions of ‘asset management’. I conclude that there is a need for practical asset management models which address assets comprehensively with an inter-organizational, strategic view. The comprehensive perspective, taking all kinds of asset types into account, is needed to integrate the research on asset management with the strategic management of companies and networks. I will show that maintenance companies can improve their profitability by increasing the flexibility of their assets. In maintenance networks, reorganizing the ownership of the assets among the different network partners can create additional value. Finally, I will introduce flexible asset management contracts for maintenance networks. These contracts address the value sharing related to reorganizing the ownership of assets according to the principles of win-win situations.
Resumo:
The purpose of this study is to investigate whether there exists any kind of relationship between the spot and future prices of the different commodities or not. Commodities like cocoa, coffee, crude oil, gold, natural gas and silver are considered from January 3, 2000 to December 31, 2012. For this purpose, ADF test and KPSS test are used in testing the stationarity whereas Johansen Cointegration test is used in testing the long-run relationship. Johansen co-integration test exhibits that there at least 5 co-integrating pairs out of 6 except crude oil. Moreover, the result of Granger Causality supports the fact that if two or more than two time series tend to be co-integrated there exists either uni-directional or bi-directional relationship. However, our results reveled that although there exists the co-integration between the variable, one might not granger causes another .VAR model is also used to measure the proportion of effects. These findings will help the derivative market and arbitragers in developing the strategies to gain the maximum profit in the financial market.
Resumo:
This thesis presents a one-dimensional, semi-empirical dynamic model for the simulation and analysis of a calcium looping process for post-combustion CO2 capture. Reduction of greenhouse emissions from fossil fuel power production requires rapid actions including the development of efficient carbon capture and sequestration technologies. The development of new carbon capture technologies can be expedited by using modelling tools. Techno-economical evaluation of new capture processes can be done quickly and cost-effectively with computational models before building expensive pilot plants. Post-combustion calcium looping is a developing carbon capture process which utilizes fluidized bed technology with lime as a sorbent. The main objective of this work was to analyse the technological feasibility of the calcium looping process at different scales with a computational model. A one-dimensional dynamic model was applied to the calcium looping process, simulating the behaviour of the interconnected circulating fluidized bed reactors. The model incorporates fundamental mass and energy balance solvers to semi-empirical models describing solid behaviour in a circulating fluidized bed and chemical reactions occurring in the calcium loop. In addition, fluidized bed combustion, heat transfer and core-wall layer effects were modelled. The calcium looping model framework was successfully applied to a 30 kWth laboratory scale and a pilot scale unit 1.7 MWth and used to design a conceptual 250 MWth industrial scale unit. Valuable information was gathered from the behaviour of a small scale laboratory device. In addition, the interconnected behaviour of pilot plant reactors and the effect of solid fluidization on the thermal and carbon dioxide balances of the system were analysed. The scale-up study provided practical information on the thermal design of an industrial sized unit, selection of particle size and operability in different load scenarios.
Resumo:
Advancements in IC processing technology has led to the innovation and growth happening in the consumer electronics sector and the evolution of the IT infrastructure supporting this exponential growth. One of the most difficult obstacles to this growth is the removal of large amount of heatgenerated by the processing and communicating nodes on the system. The scaling down of technology and the increase in power density is posing a direct and consequential effect on the rise in temperature. This has resulted in the increase in cooling budgets, and affects both the life-time reliability and performance of the system. Hence, reducing on-chip temperatures has become a major design concern for modern microprocessors. This dissertation addresses the thermal challenges at different levels for both 2D planer and 3D stacked systems. It proposes a self-timed thermal monitoring strategy based on the liberal use of on-chip thermal sensors. This makes use of noise variation tolerant and leakage current based thermal sensing for monitoring purposes. In order to study thermal management issues from early design stages, accurate thermal modeling and analysis at design time is essential. In this regard, spatial temperature profile of the global Cu nanowire for on-chip interconnects has been analyzed. It presents a 3D thermal model of a multicore system in order to investigate the effects of hotspots and the placement of silicon die layers, on the thermal performance of a modern ip-chip package. For a 3D stacked system, the primary design goal is to maximise the performance within the given power and thermal envelopes. Hence, a thermally efficient routing strategy for 3D NoC-Bus hybrid architectures has been proposed to mitigate on-chip temperatures by herding most of the switching activity to the die which is closer to heat sink. Finally, an exploration of various thermal-aware placement approaches for both the 2D and 3D stacked systems has been presented. Various thermal models have been developed and thermal control metrics have been extracted. An efficient thermal-aware application mapping algorithm for a 2D NoC has been presented. It has been shown that the proposed mapping algorithm reduces the effective area reeling under high temperatures when compared to the state of the art.
Resumo:
In the doctoral dissertation, low-voltage direct current (LVDC) distribution system stability, supply security and power quality are evaluated by computational modelling and measurements on an LVDC research platform. Computational models for the LVDC network analysis are developed. Time-domain simulation models are implemented in the time-domain simulation environment PSCAD/EMTDC. The PSCAD/EMTDC models of the LVDC network are applied to the transient behaviour and power quality studies. The LVDC network power loss model is developed in a MATLAB environment and is capable of fast estimation of the network and component power losses. The model integrates analytical equations that describe the power loss mechanism of the network components with power flow calculations. For an LVDC network research platform, a monitoring and control software solution is developed. The solution is used to deliver measurement data for verification of the developed models and analysis of the modelling results. In the work, the power loss mechanism of the LVDC network components and its main dependencies are described. Energy loss distribution of the LVDC network components is presented. Power quality measurements and current spectra are provided and harmonic pollution on the DC network is analysed. The transient behaviour of the network is verified through time-domain simulations. DC capacitor guidelines for an LVDC power distribution network are introduced. The power loss analysis results show that one of the main optimisation targets for an LVDC power distribution network should be reduction of the no-load losses and efficiency improvement of converters at partial loads. Low-frequency spectra of the network voltages and currents are shown, and harmonic propagation is analysed. Power quality in the LVDC network point of common coupling (PCC) is discussed. Power quality standard requirements are shown to be met by the LVDC network. The network behaviour during transients is analysed by time-domain simulations. The network is shown to be transient stable during large-scale disturbances. Measurement results on the LVDC research platform proving this are presented in the work.
Resumo:
The purpose of this work is to obtain a better understanding of behaviour of possible ultrasound appliance on fluid media mixing. The research is done in the regard to Newtonian and non-Newtonian fluids. The process of ultrasound appliance on liquids is modelled in COMSOL Multiphysics software. The influence of ultrasound using is introduced as waveform equation. Turbulence modelling is fulfilled by the k-ε model in Newtonian fluid. The modeling of ultrasound assisted mixing in non-Newtonian fluids is based on the power law. To verify modelling results two practical methods are used: Particle Image Velocimetry and measurements of mixing time. Particle Image Velocimetry allows capturing of velocity flow field continuously and presents detailed depiction of liquid dynamics. The second way of verification is the comparison of mixing time of homogeneity. Experimentally achievement of mixing time is done by conductivity measurements. In modelling part mixing time is achieved by special module of COMSOL Multiphysics – the transport of diluted species. Both practical and modelling parts show similar radial mechanism of fluid flow under ultrasound appliance – from the horn tip fluid moves to the bottom and along the walls goes back. Velocity profiles are similar in modelling and experimental part in the case of Newtonian fluid. In the case of non-Newtonian fluid velocity profiles do not agree. The development track of ultrasound-assisted mixing modelling is presented in the thesis.
Resumo:
Effective control and limiting of carbon dioxide (CO₂) emissions in energy production are major challenges of science today. Current research activities include the development of new low-cost carbon capture technologies, and among the proposed concepts, chemical combustion (CLC) and chemical looping with oxygen uncoupling (CLOU) have attracted significant attention allowing intrinsic separation of pure CO₂ from a hydrocarbon fuel combustion process with a comparatively small energy penalty. Both CLC and CLOU utilize the well-established fluidized bed technology, but several technical challenges need to be overcome in order to commercialize the processes. Therefore, development of proper modelling and simulation tools is essential for the design, optimization, and scale-up of chemical looping-based combustion systems. The main objective of this work was to analyze the technological feasibility of CLC and CLOU processes at different scales using a computational modelling approach. A onedimensional fluidized bed model frame was constructed and applied for simulations of CLC and CLOU systems consisting of interconnected fluidized bed reactors. The model is based on the conservation of mass and energy, and semi-empirical correlations are used to describe the hydrodynamics, chemical reactions, and transfer of heat in the reactors. Another objective was to evaluate the viability of chemical looping-based energy production, and a flow sheet model representing a CLC-integrated steam power plant was developed. The 1D model frame was succesfully validated based on the operation of a 150 kWth laboratory-sized CLC unit fed by methane. By following certain scale-up criteria, a conceptual design for a CLC reactor system at a pre-commercial scale of 100 MWth was created, after which the validated model was used to predict the performance of the system. As a result, further understanding of the parameters affecting the operation of a large-scale CLC process was acquired, which will be useful for the practical design work in the future. The integration of the reactor system and steam turbine cycle for power production was studied resulting in a suggested plant layout including a CLC boiler system, a simple heat recovery setup, and an integrated steam cycle with a three pressure level steam turbine. Possible operational regions of a CLOU reactor system fed by bituminous coal were determined via mass, energy, and exergy balance analysis. Finally, the 1D fluidized bed model was modified suitable for CLOU, and the performance of a hypothetical 500 MWth CLOU fuel reactor was evaluated by extensive case simulations.
Resumo:
Meandering rivers have been perceived to evolve rather similarly around the world independently of the location or size of the river. Despite the many consistent processes and characteristics they have also been noted to show complex and unique sets of fluviomorphological processes in which local factors play important role. These complex interactions of flow and morphology affect notably the development of the river. Comprehensive and fundamental field, flume and theoretically based studies of fluviomorphological processes in meandering rivers have been carried out especially during the latter part of the 20th century. However, as these studies have been carried out with traditional field measurements techniques their spatial and temporal resolution is not competitive to the level achievable today. The hypothesis of this study is that, by exploiting e increased spatial and temporal resolution of the data, achieved by combining conventional field measurements with a range of modern technologies, will provide new insights to the spatial patterns of the flow-sediment interaction in meandering streams, which have perceived to show notable variation in space and time. This thesis shows how the modern technologies can be combined to derive very high spatial and temporal resolution data on fluvio-morphological processes over meander bends. The flow structure over the bends is recorded in situ using acoustic Doppler current profiler (ADCP) and the spatial and temporal resolution of the flow data is enhanced using 2D and 3D CFD over various meander bends. The CFD are also exploited to simulate sediment transport. Multi-temporal terrestrial laser scanning (TLS), mobile laser scanning (MLS) and echo sounding data are used to measure the flow-based changes and formations over meander bends and to build the computational models. The spatial patterns of erosion and deposition over meander bends are analysed relative to the measured and modelled flow field and sediment transport. The results are compared with the classic theories of the processes in meander bends. Mainly, the results of this study follow well the existing theories and results of previous studies. However, some new insights regarding to the spatial and temporal patterns of the flow-sediment interaction in a natural sand-bed meander bend are provided. The results of this study show the advantages of the rapid and detailed measurements techniques and the achieved spatial and temporal resolution provided by CFD, unachievable with field measurements. The thesis also discusses the limitations which remain in the measurement and modelling methods and in understanding of fluvial geomorphology of meander bends. Further, the hydro- and morphodynamic models’ sensitivity to user-defined parameters is tested, and the modelling results are assessed against detailed field measurement. The study is implemented in the meandering sub-Arctic Pulmanki River in Finland. The river is unregulated and sand-bed and major morphological changes occur annually on the meander point bars, which are inundated only during the snow-melt-induced spring floods. The outcome of this study applies to sandbed meandering rivers in regions where normally one significant flood event occurs annually, such as Arctic areas with snow-melt induced spring floods, and where the point bars of the meander bends are inundated only during the flood events.
Resumo:
Human activity recognition in everyday environments is a critical, but challenging task in Ambient Intelligence applications to achieve proper Ambient Assisted Living, and key challenges still remain to be dealt with to realize robust methods. One of the major limitations of the Ambient Intelligence systems today is the lack of semantic models of those activities on the environment, so that the system can recognize the speci c activity being performed by the user(s) and act accordingly. In this context, this thesis addresses the general problem of knowledge representation in Smart Spaces. The main objective is to develop knowledge-based models, equipped with semantics to learn, infer and monitor human behaviours in Smart Spaces. Moreover, it is easy to recognize that some aspects of this problem have a high degree of uncertainty, and therefore, the developed models must be equipped with mechanisms to manage this type of information. A fuzzy ontology and a semantic hybrid system are presented to allow modelling and recognition of a set of complex real-life scenarios where vagueness and uncertainty are inherent to the human nature of the users that perform it. The handling of uncertain, incomplete and vague data (i.e., missing sensor readings and activity execution variations, since human behaviour is non-deterministic) is approached for the rst time through a fuzzy ontology validated on real-time settings within a hybrid data-driven and knowledgebased architecture. The semantics of activities, sub-activities and real-time object interaction are taken into consideration. The proposed framework consists of two main modules: the low-level sub-activity recognizer and the high-level activity recognizer. The rst module detects sub-activities (i.e., actions or basic activities) that take input data directly from a depth sensor (Kinect). The main contribution of this thesis tackles the second component of the hybrid system, which lays on top of the previous one, in a superior level of abstraction, and acquires the input data from the rst module's output, and executes ontological inference to provide users, activities and their in uence in the environment, with semantics. This component is thus knowledge-based, and a fuzzy ontology was designed to model the high-level activities. Since activity recognition requires context-awareness and the ability to discriminate among activities in di erent environments, the semantic framework allows for modelling common-sense knowledge in the form of a rule-based system that supports expressions close to natural language in the form of fuzzy linguistic labels. The framework advantages have been evaluated with a challenging and new public dataset, CAD-120, achieving an accuracy of 90.1% and 91.1% respectively for low and high-level activities. This entails an improvement over both, entirely data-driven approaches, and merely ontology-based approaches. As an added value, for the system to be su ciently simple and exible to be managed by non-expert users, and thus, facilitate the transfer of research to industry, a development framework composed by a programming toolbox, a hybrid crisp and fuzzy architecture, and graphical models to represent and con gure human behaviour in Smart Spaces, were developed in order to provide the framework with more usability in the nal application. As a result, human behaviour recognition can help assisting people with special needs such as in healthcare, independent elderly living, in remote rehabilitation monitoring, industrial process guideline control, and many other cases. This thesis shows use cases in these areas.
Resumo:
Successful management of rivers requires an understanding of the fluvial processes that govern them. This, in turn cannot be achieved without a means of quantifying their geomorphology and hydrology and the spatio-temporal interactions between them, that is, their hydromorphology. For a long time, it has been laborious and time-consuming to measure river topography, especially in the submerged part of the channel. The measurement of the flow field has been challenging as well, and hence, such measurements have long been sparse in natural environments. Technological advancements in the field of remote sensing in the recent years have opened up new possibilities for capturing synoptic information on river environments. This thesis presents new developments in fluvial remote sensing of both topography and water flow. A set of close-range remote sensing methods is employed to eventually construct a high-resolution unified empirical hydromorphological model, that is, river channel and floodplain topography and three-dimensional areal flow field. Empirical as well as hydraulic theory-based optical remote sensing methods are tested and evaluated using normal colour aerial photographs and sonar calibration and reference measurements on a rocky-bed sub-Arctic river. The empirical optical bathymetry model is developed further by the introduction of a deep-water radiance parameter estimation algorithm that extends the field of application of the model to shallow streams. The effect of this parameter on the model is also assessed in a study of a sandy-bed sub-Arctic river using close-range high-resolution aerial photography, presenting one of the first examples of fluvial bathymetry modelling from unmanned aerial vehicles (UAV). Further close-range remote sensing methods are added to complete the topography integrating the river bed with the floodplain to create a seamless high-resolution topography. Boat- cart- and backpack-based mobile laser scanning (MLS) are used to measure the topography of the dry part of the channel at a high resolution and accuracy. Multitemporal MLS is evaluated along with UAV-based photogrammetry against terrestrial laser scanning reference data and merged with UAV-based bathymetry to create a two-year series of seamless digital terrain models. These allow the evaluation of the methodology for conducting high-resolution change analysis of the entire channel. The remote sensing based model of hydromorphology is completed by a new methodology for mapping the flow field in 3D. An acoustic Doppler current profiler (ADCP) is deployed on a remote-controlled boat with a survey-grade global navigation satellite system (GNSS) receiver, allowing the positioning of the areally sampled 3D flow vectors in 3D space as a point cloud and its interpolation into a 3D matrix allows a quantitative volumetric flow analysis. Multitemporal areal 3D flow field data show the evolution of the flow field during a snow-melt flood event. The combination of the underwater and dry topography with the flow field yields a compete model of river hydromorphology at the reach scale.
Resumo:
Rough turning is an important form of manufacturing cylinder-symmetric parts. Thus far, increasing the level of automation in rough turning has included process monitoring methods or adaptive turning control methods that aim to keep the process conditions constant. However, in order to improve process safety, quality and efficiency, an adaptive turning control should be transformed into an intelligent machining system optimizing cutting values to match process conditions or to actively seek to improve process conditions. In this study, primary and secondary chatter and chip formation are studied to understand how to measure the effect of these phenomena to the process conditions and how to avoid undesired cutting conditions. The concept of cutting state is used to address the combination of these phenomena and the current use of the power capacity of the lathe. The measures to the phenomena are not developed based on physical measures, but instead, the severity of the measures is modelled against expert opinion. Based on the concept of cutting state, an expert system style fuzzy control system capable of optimizing the cutting process was created. Important aspects of the system include the capability to adapt to several cutting phenomena appearing at once, even if the said phenomena would potentially require conflicting control action.
Resumo:
The energy consumption of IT equipments is becoming an issue of increasing importance. In particular, network equipments such as routers and switches are major contributors to the energy consumption of internet. Therefore it is important to understand how the relationship between input parameters such as bandwidth, number of active ports, traffic-load, hibernation-mode and their impact on energy consumption of a switch. In this paper, the energy consumption of a switch is analyzed in extensive experiments. A fuzzy rule-based model of energy consumption of a switch is proposed based on the result of experiments. The model can be used to predict the energy saving when deploying new switches by controlling the parameters to achieve desired energy consumption and subsequent performance. Furthermore, the model can also be used for further researches on energy saving techniques such as energy-efficient routing protocol, dynamic link shutdown, etc.
Resumo:
Wind is one of the most compelling forms of indirect solar energy. Available now, the conversion of wind power into electricity is and will continue to be an important element of energy self-sufficiency planning. This paper is one in a series intended to report on the development of a new type of generator for wind energy; a compact, high-power, direct-drive permanent magnet synchronous generator (DD-PMSG) that uses direct liquid cooling (LC) of the stator windings to manage Joule heating losses. The main param-eters of the subject LC DD-PMSG are 8 MW, 3.3 kV, and 11 Hz. The stator winding is cooled directly by deionized water, which flows through the continuous hollow conductor of each stator tooth-coil winding. The design of the machine is to a large degree subordinate to the use of these solid-copper tooth-coils. Both steady-state and timedependent temperature distributions for LC DD-PMSG were examined with calculations based on a lumpedparameter thermal model, which makes it possible to account for uneven heat loss distribution in the stator conductors and the conductor cooling system. Transient calculations reveal the copper winding temperature distribution for an example duty cycle during variable-speed wind turbine operation. The cooling performance of the liquid cooled tooth-coil design was predicted via finite element analysis. An instrumented cooling loop featuring a pair of LC tooth-coils embedded in a lamination stack was built and laboratory tested to verify the analytical model. Predicted and measured results were in agreement, confirming the predicted satisfactory operation of the LC DD-PMSG cooling technology approach as a whole.