98 resultados para GIS modeling
Resumo:
Financial time series have a tendency of abruptly changing their behavior and maintain this behavior for several consecutive periods, and commodity futures returns are not an exception. This quality proposes that nonlinear models, as opposed to linear models, can more accurately describe returns and volatility. Markov regime switching models are able to match this behavior and have become a popular way to model financial time series. This study uses Markov regime switching model to describe the behavior of energy futures returns on a commodity level, because studies show that commodity futures are a heterogeneous asset class. The purpose of this thesis is twofold. First, determine how many regimes characterize individual energy commodities’ returns in different return frequencies. Second, study the characteristics of these regimes. We extent the previous studies on the subject in two ways: We allow for the possibility that the number of regimes may exceed two, as well as conduct the research on individual commodities rather than on commodity indices or subgroups of these indices. We use daily, weekly and monthly time series of Brent crude oil, WTI crude oil, natural gas, heating oil and gasoil futures returns over 1994–2014, where available, to carry out the study. We apply the likelihood ratio test to determine the sufficient number of regimes for each commodity and data frequency. Then the time series are modeled with Markov regime switching model to obtain the return distribution characteristics of each regime, as well as the transition probabilities of moving between regimes. The results for the number of regimes suggest that daily energy futures return series consist of three to six regimes, whereas weekly and monthly returns for all energy commodities display only two regimes. When the number of regimes exceeds two, there is a tendency for the time series of energy commodities to form groups of regimes. These groups are usually quite persistent as a whole because probability of a regime switch inside the group is high. However, individual regimes in these groups are not persistent and the process oscillates between these regimes frequently. Regimes that are not part of any group are generally persistent, but show low ergodic probability, i.e. rarely prevail in the market. This study also suggests that energy futures return series characterized with two regimes do not necessarily display persistent bull and bear regimes. In fact, for the majority of time series, bearish regime is considerably less persistent. Rahoituksen aikasarjoilla on taipumus arvaamattomasti muuttaa käyttäytymistään ja jatkaa tätä uutta käyttäytymistä useiden periodien ajan, eivätkä hyödykefutuurien tuotot tee tähän poikkeusta. Tämän ominaisuuden johdosta lineaaristen mallien sijasta epälineaariset mallit pystyvät tarkemmin kuvailemaan esimerkiksi tuottojen jakauman parametreja. Markov regiiminvaihtomallit pystyvät vangitsemaan tämän ominaisuuden ja siksi niistä on tullut suosittuja rahoituksen aikasarjojen mallintamisessa. Tämä tutkimus käyttää Markov regiiminvaihtomallia kuvaamaan yksittäisten energiafutuurien tuottojen käyttäytymistä, sillä tutkimukset osoittavat hyödykefutuurien olevan hyvin heterogeeninen omaisuusluokka. Tutkimuksen tarkoitus on selvittää, kuinka monta regiimiä tarvitaan kuvaamaan energiafutuurien tuottoja eri tuottofrekvensseillä ja mitkä ovat näiden regiimien ominaisuudet. Aiempaa tutkimusta aiheesta laajennetaan määrittämällä regiimien lukumäärä tilastotieteellisen testauksen menetelmin sekä tutkimalla energiafutuureja yksittäin; ei indeksi- tai alaindeksitasolla. Tutkimuksessa käytetään päivä-, viikko- ja kuukausiaikasarjoja Brent-raakaöljyn, WTI-raakaöljyn, maakaasun, lämmitysöljyn ja polttoöljyn tuotoista aikaväliltä 1994–2014, siltä osin kuin aineistoa on saatavilla. Likelihood ratio -testin avulla estimoidaan kaikille aikasarjoille regiimien määrä,jonka jälkeen Markov regiiminvaihtomallia hyödyntäen määritetään yksittäisten regiimientuottojakaumien ominaisuudet sekä regiimien välinen transitiomatriisi. Tulokset regiimien lukumäärän osalta osoittavat, että energiafutuurien päiväkohtaisten tuottojen aikasarjoissa regiimien lukumäärä vaihtelee kolmen ja kuuden välillä. Viikko- ja kuukausituottojen kohdalla kaikkien energiafutuurien prosesseissa regiimien lukumäärä on kaksi. Kun regiimejä on enemmän kuin kaksi, on prosessilla taipumus muodostaa regiimeistä koostuvia ryhmiä. Prosessi pysyy ryhmän sisällä yleensä pitkään, koska todennäköisyys siirtyä ryhmään kuuluvien regiimien välillä on suuri. Yksittäiset regiimit ryhmän sisällä eivät kuitenkaan ole kovin pysyviä. Näin ollen prosessi vaihtelee ryhmän sisäisten regiimien välillä tiuhaan. Regiimit, jotka eivät kuulu ryhmään, ovat yleensä pysyviä, mutta prosessi ajautuu niihin vain harvoin, sillä todennäköisyys siirtyä muista regiimeistä niihin on pieni. Tutkimuksen tulokset osoittavat myös, että prosesseissa, joita ohjaa kaksi regiimiä, nämä regiimit eivät välttämättä ole pysyvät bull- ja bear-markkinatilanteet. Tulokset osoittavat sen sijaan, että bear-markkinatilanne on energiafutuureissa selvästi vähemmän pysyvä.
Resumo:
The number of security violations is increasing and a security breach could have irreversible impacts to business. There are several ways to improve organization security, but some of them may be difficult to comprehend. This thesis demystifies threat modeling as part of secure system development. Threat modeling enables developers to reveal previously undetected security issues from computer systems. It offers a structured approach for organizations to find and address threats against vulnerabilities. When implemented correctly threat modeling will reduce the amount of defects and malicious attempts against the target environment. In this thesis Microsoft Security Development Lifecycle (SDL) is introduced as an effective methodology for reducing defects in the target system. SDL is traditionally meant to be used in software development, principles can be however partially adapted to IT-infrastructure development. Microsoft threat modeling methodology is an important part of SDL and it is utilized in this thesis to find threats from the Acme Corporation’s factory environment. Acme Corporation is used as a pseudonym for a company providing high-technology consumer electronics. Target for threat modeling is the IT-infrastructure of factory’s manufacturing execution system. Microsoft threat modeling methodology utilizes STRIDE –mnemonic and data flow diagrams to find threats. Threat modeling in this thesis returned results that were important for the organization. Acme Corporation now has more comprehensive understanding concerning IT-infrastructure of the manufacturing execution system. On top of vulnerability related results threat modeling provided coherent views of the target system. Subject matter experts from different areas can now agree upon functions and dependencies of the target system. Threat modeling was recognized as a useful activity for improving security.
Resumo:
The goal of this thesis is to define and validate a software engineering approach for the development of a distributed system for the modeling of composite materials, based on the analysis of various existing software development methods. We reviewed the main features of: (1) software engineering methodologies; (2) distributed system characteristics and their effect on software development; (3) composite materials modeling activities and the requirements for the software development. Using the design science as a research methodology, the distributed system for creating models of composite materials is created and evaluated. Empirical experiments which we conducted showed good convergence of modeled and real processes. During the study, we paid attention to the matter of complexity and importance of distributed system and a deep understanding of modern software engineering methods and tools.
Resumo:
The objective of the work is to study the flow behavior and to support the design of air cleaner by dynamic simulation.In a paper printing industry, it is necessary to monitor the quality of paper when the paper is being produced. During the production, the quality of the paper can be monitored by camera. Therefore, it is necessary to keep the camera lens clean as wood particles may fall from the paper and lie on the camera lens. In this work, the behavior of the air flow and effect of the airflow on the particles at different inlet angles are simulated. Geometries of a different inlet angles of single-channel and double-channel case were constructed using ANSYS CFD Software. All the simulations were performed in ANSYS Fluent. The simulation results of single-channel and double-channel case revealed significant differences in the behavior of the flow and the particle velocity. The main conclusion from this work are in following. 1) For the single channel case the best angle was 0 degree because in that case, the air flow can keep 60% of the particles away from the lens which would otherwise stay on lens. 2) For the double channel case, the best solution was found when the angle of the first inlet was 0 degree and the angle of second inlet was 45 degree . In that case, the airflow can keep 91% of particles away from the lens which would otherwise stay on lens.
Resumo:
Wind power is a rapidly developing, low-emission form of energy production. In Fin-land, the official objective is to increase wind power capacity from the current 1 005 MW up to 3 500–4 000 MW by 2025. By the end of April 2015, the total capacity of all wind power project being planned in Finland had surpassed 11 000 MW. As the amount of projects in Finland is record high, an increasing amount of infrastructure is also being planned and constructed. Traditionally, these planning operations are conducted using manual and labor-intensive work methods that are prone to subjectivity. This study introduces a GIS-based methodology for determining optimal paths to sup-port the planning of onshore wind park infrastructure alignment in Nordanå-Lövböle wind park located on the island of Kemiönsaari in Southwest Finland. The presented methodology utilizes a least-cost path (LCP) algorithm for searching of optimal paths within a high resolution real-world terrain dataset derived from airborne lidar scannings. In addition, planning data is used to provide a realistic planning framework for the anal-ysis. In order to produce realistic results, the physiographic and planning datasets are standardized and weighted according to qualitative suitability assessments by utilizing methods and practices offered by multi-criteria evaluation (MCE). The results are pre-sented as scenarios to correspond various different planning objectives. Finally, the methodology is documented by using tools of Business Process Management (BPM). The results show that the presented methodology can be effectively used to search and identify extensive, 20 to 35 kilometers long networks of paths that correspond to certain optimization objectives in the study area. The utilization of high-resolution terrain data produces a more objective and more detailed path alignment plan. This study demon-strates that the presented methodology can be practically applied to support a wind power infrastructure alignment planning process. The six-phase structure of the method-ology allows straightforward incorporation of different optimization objectives. The methodology responds well to combining quantitative and qualitative data. Additional-ly, the careful documentation presents an example of how the methodology can be eval-uated and developed as a business process. This thesis also shows that more emphasis on the research of algorithm-based, more objective methods for the planning of infrastruc-ture alignment is desirable, as technological development has only recently started to realize the potential of these computational methods.
Resumo:
This study presents an agile tool set for the business modeling in companies, entering the turbulent environment. The study’s aim is to explore business modeling techniques and their tooling by utilizing a case study of a Finnish media monitoring company, expanding to the Russian market. This work proposes a tailored “two-approach” of business modeling development that analyzes both the past and future conditions of two key factors of business modeling for companies – internal and external environments. The study explores a case company by investigating the benefits and disadvantages of firm’s present business modeling tools, developing a new tooling and applying it to the case company. Among primary data utilization, such as interviews with media monitoring industry analysts and representatives of the competing companies, and academic experts, study leans up on the comprehensive analysis of Russian media monitoring niche and its players. This study benefits the business modeling research area and combines traditional analysis tools, such as market, PESTLE and competitor analyses, in a systemic manner, with the business modeling techniques. This transformation proceeds through applying of the integrated scenario, heat map and critical design issues’ analyses in the societal, industrial and competitive context of turbulent environments. The practical outcome of this approach is the development of agile business modeling tool set, customizable by company’s requirements.