94 resultados para tube-fin heat exchanger
Resumo:
Protein homeostasis is essential for cells to prosper and survive. Various forms of stress, such as elevated temperatures, oxidative stress, heavy metals or bacterial infections cause protein damage, which might lead to improper folding and formation of toxic protein aggregates. Protein aggregation is associated with serious pathological conditions such as Alzheimer’s and Huntington’s disease. The heat shock response is a defense mechanism that protects the cell against protein-damaging stress. Its ancient origin and high conservation among eukaryotes suggest that the response is crucial for survival. The main regulator of the heat shock response is the transcription factor heat shock factor 1 (HSF1), which induces transcription of genes encoding protective molecular chaperones. In vertebrates, a family of four HSFs exists (HSF1-4), with versatile functions not only in coping with acute stress, but also in development, longevity and cancer. Thus, knowledge of the HSFs will aid in our understanding on how cells survive suboptimal circumstances, but will also provide insights into normal physiological processes as well as diseaseassociated conditions. In this study, the function and regulation of HSF2 have been investigated. Earlier gene inactivation experiments in mice have revealed roles for HSF2 in development, particularly in corticogenesis and spermatogenesis. Here, we demonstrate that HSF2 holds a role also in the heat shock response and influences stress-induced expression of heat shock proteins. Intriguingly, DNA-binding activity of HSF2 upon stress was dependent on the presence of intact HSF1, suggesting functional interplay between HSF1 and HSF2. The underlying mechanism for this phenomenon could be configuration of heterotrimers between the two factors, a possibility that was experimentally verified. By changing the levels of HSF2, the expression of HSF1-HSF2 heterotrimer target genes was altered, implementing HSF2 as a modulator of HSF-mediated transcription. The results further indicate that HSF2 activity is dependent on its concentration, which led us to ask the question of how accurate HSF2 levels are achieved. Using mouse spermatogenesis as a model system, HSF2 was found to be under direct control of miR-18, a miRNA belonging to the miR-17~92 cluster/Oncomir-1 and whose physiological function had remained unclear. Investigations on spermatogenesis are severely hampered by the lack of cell systems that would mimic the complex differentiation processes that constitute male germ cell development. Therefore, to verify that HSF2 is regulated by miR-18 in spermatogenesis, a novel method named T-GIST (Transfection of Germ cells in Intact Seminiferous Tubules) was developed. Employing this method, the functional consequences of miR-18-mediated regulation in vivo were demonstrated; inhibition of miR- 18 led to increased expression of HSF2 and altered the expression of HSF2 target genes Ssty2 and Speer4a. Consequently, the results link miR-18 to HSF2-mediated processes such as germ cell maturation and quality control and provide miR-18 with a physiological role in gene expression during spermatogenesis.Taken together, this study presents compelling evidence that HSF2 is a transcriptional regulator in the heat shock response and establishes the concept of physical interplay between HSF2 and HSF1 and functional consequences thereof. This is also the first study describing miRNA-mediated regulation of an HSF.
Resumo:
Många förbränningsanläggningar som bränner utmanande bränslen såsom restfraktioner och avfall råkar ut för problem med ökad korrosion på överhettare och/eller vattenväggar pga. komponenter i bränslena som är korrosiva. För att minimera problemen i avfallseldade pannor hålls ångparametrarna på en relativt låg nivå, vilket drastiskt minskar energiproduktionen. Beläggningarna i avfallseldade pannor består till största delen av element som är förknippade med högtemperaturkorrosion: Cl, S, alkalimetaller, främst K och Na, och tungmetaller som Pb och Zn, och det finns också indikationer av Br-förekomst. Det låga ångtrycket i avfallseldade pannor påverkar också stålrörens temperatur i pannväggarna i eldstaden. I dagens läge hålls temperaturen normalt vid 300-400 °C. Alkalikloridorsakad (KCl, NaCl) högtemperaturkorrosion har inte rapporterats vara relevant vid såpass låga temperaturer, men närvaro av Zn- och Pb-komponenter i beläggningarna har påvisats förorsaka ökad korrosion redan vid 300-400 °C. Vid förbränning kan Zn och Pb reagera med S och Cl och bilda klorider och sulfater i rökgaserna. Dessa tungmetallföreningar är speciellt problematiska pga. de bildar lågsmältande saltblandningar. Dessa lågsmältande gasformiga eller fasta föreningar följer rökgasen och kan sedan fastna eller kondensera på kallare ytor på pannväggar eller överhettare för att sedan bilda aggressiva beläggningar. Tungmetallrika (Pb, Zn) klorider och sulfater ökar risken för korrosion, och effekten förstärks ytterligare vid närvaro av smälta. Motivet med den här studien var att få en bättre insikt i högtemperaturkorrosion förorsakad av Zn och Pb, samt att undersöka och prediktera beteendet och motståndskraften hos några stålkvaliteter som används i överhettare och pannväggar i tungmetallrika förhållanden och höga materialtemperaturer. Omfattande laboratorie-, småskale- och fullskaletest utfördes. Resultaten kan direkt utnyttjas i praktiska applikationer, t.ex. vid materialval, eller vid utveckling av korrosionsmotverkande verktyg för att hitta initierande faktorer och förstå deras effekt på högtemperaturkorrosion.
Resumo:
Following over 170+ pages and additional appendixes are formed based on content of Course: Fundamentals of Heat Transfer. Mainly this summarizes relevant parts on Book of Fundamentals of Heat and Mass Transfer (Incropera), but also other references introducing the same concepts are included. Student’s point of view has been consideredwith following highlights: (1) Relevant topics are presented in a nutshell to provide fast digestion of principles of heat transfer. (2) Appendixes include terminology dictionary. (3) Totally 22 illustrating examples are connecting theory to practical applications and quantifying heat transfer to understandable forms as: temperatures, heat transfer rates, heat fluxes, resistances and etc. (4) Most important Learning outcomes are presented for each topic separately. The Book, Fundamentals of Heat and Mass Transfer (Incropera), is certainly recommended for those going beyond basic knowledge of heat transfer. Lecture Notes consists of four primary content-wise objectives: (1) Give understanding to physical mechanisms of heat transfer, (2)Present basic concepts and terminology relevant for conduction, convection and radiation (3) Introduce thermal performance analysis methods for steady state and transient conduction systems. (4) Provide fast-to-digest phenomenological understanding required for basic design of thermal models
Resumo:
Measurement is a tool for researching. Therefore, it is important that the measuring process is carried out correctly, without distorting the signal or the measured event. Researches of thermoelectric phenomena have been focused more on transverse thermoelectric phenomena during recent decades. Transverse Seebeck effect enables to produce thinner and faster heat flux sensor than before. Studies about transverse Seebeck effect have so far focused on materials, so in this Master’s Thesis instrumentation of transverse Seebeck effect based heat flux sensor is studied, This Master’s Thesis examines an equivalent circuit of transverse Seebeck effect heat flux sensors, their connectivity to electronics and choosing and design a right type amplifier. The research is carried out with a case study which is Gradient Heat Flux Sensors and an electrical motor. In this work, a general equivalent circuit was presented for the transverse Seebeck effect-based heat flux sensor. An amplifier was designed for the sensor of the case study, and the solution was produced for the measurement of the local heat flux of the electric motor to improve the electromagnetic compatibility.
Resumo:
High strength steel (HSS) has been in use in workshops since the 1980s. At that time, the significance of the term HSS differed from the modern conception as the maximum yield strength of HSSs has increased nearly every year. There are three different ways to make HSS. The first and oldest method is QT (quenched and tempered) followed by the TMCP (thermomechanical controlled process) and DQ (direct quenching) methods. This thesis consists of two parts, the first of which part introduces the research topic and discusses welded HSS structures by characterizing the most important variables. In the second part of the thesis, the usability of welded HSS structures is examined through a set of laboratory tests. The results of this study explain the differences in the usability of the welded HSSs made by the three different methods. The results additionally indicate that usage of different HSSs in the welded structures presumes that manufacturers know what kind of HSS they are welding. As manufacturers use greater strength HSSs in welded structures, the demands for welding rise as well. Therefore, during the manufacturing process, factors such as heat input, cooling time, weld quality, and more must be under careful observation.
Resumo:
The paper is devoted to study specific aspects of heat transfer in the combustion chamber of compression ignited reciprocating internal combustion engines and possibility to directly measure the heat flux by means of Gradient Heat Flux Sensors (GHFS). A one – dimensional single zone model proposed by Kyung Tae Yun et al. and implemented with the aid of Matlab, was used to obtain approximate picture of heat flux behavior in the combustion chamber with relation to the crank angle. The model’s numerical output was compared to the experimental results. The experiment was accomplished by A. Mityakov at four stroke diesel engine Indenor XL4D. Local heat fluxes on the surface of cylinder head were measured with fast – response, high – sensitive GHFS. The comparison of numerical data with experimental results has revealed a small deviation in obtained heat flux values throughout the cycle and different behavior of heat flux curve after Top Dead Center.
Resumo:
This master’s thesis is devoted to study different heat flux measurement techniques such as differential temperature sensors, semi-infinite surface temperature methods, calorimetric sensors and gradient heat flux sensors. The possibility to use Gradient Heat Flux Sensors (GHFS) to measure heat flux in the combustion chamber of compression ignited reciprocating internal combustion engines was considered in more detail. A. Mityakov conducted an experiment, where Gradient Heat Flux Sensor was placed in four stroke diesel engine Indenor XL4D to measure heat flux in the combustion chamber. The results which were obtained from the experiment were compared with model’s numerical output. This model (a one – dimensional single zone model) was implemented with help of MathCAD and the result of this implementation is graph of heat flux in combustion chamber in relation to the crank angle. The values of heat flux throughout the cycle obtained with aid of heat flux sensor and theoretically were sufficiently similar, but not identical. Such deviation is rather common for this type of experiment.
Resumo:
Fireside deposits can be found in many types of utility and industrial furnaces. The deposits in furnaces are problematic because they can reduce heat transfer, block gas paths and cause corrosion. To tackle these problems, it is vital to estimate the influence of deposits on heat transfer, to minimize deposit formation and to optimize deposit removal. It is beneficial to have a good understanding of the mechanisms of fireside deposit formation. Numerical modeling is a powerful tool for investigating the heat transfer in furnaces, and it can provide valuable information for understanding the mechanisms of deposit formation. In addition, a sub-model of deposit formation is generally an essential part of a comprehensive furnace model. This work investigates two specific processes of fireside deposit formation in two industrial furnaces. The first process is the slagging wall found in furnaces with molten deposits running on the wall. A slagging wall model is developed to take into account the two-layer structure of the deposits. With the slagging wall model, the thickness and the surface temperature of the molten deposit layer can be calculated. The slagging wall model is used to predict the surface temperature and the heat transfer to a specific section of a super-heater tube panel with the boundary condition obtained from a Kraft recovery furnace model. The slagging wall model is also incorporated into the computational fluid dynamics (CFD)-based Kraft recovery furnace model and applied on the lower furnace walls. The implementation of the slagging wall model includes a grid simplification scheme. The wall surface temperature calculated with the slagging wall model is used as the heat transfer boundary condition. Simulation of a Kraft recovery furnace is performed, and it is compared with two other cases and measurements. In the two other cases, a uniform wall surface temperature and a wall surface temperature calculated with a char bed burning model are used as the heat transfer boundary conditions. In this particular furnace, the wall surface temperatures from the three cases are similar and are in the correct range of the measurements. Nevertheless, the wall surface temperature profiles with the slagging wall model and the char bed burning model are different because the deposits are represented differently in the two models. In addition, the slagging wall model is proven to be computationally efficient. The second process is deposit formation due to thermophoresis of fine particles to the heat transfer surface. This process is considered in the simulation of a heat recovery boiler of the flash smelting process. In order to determine if the small dust particles stay on the wall, a criterion based on the analysis of forces acting on the particle is applied. Time-dependent simulation of deposit formation in the heat recovery boiler is carried out and the influence of deposits on heat transfer is investigated. The locations prone to deposit formation are also identified in the heat recovery boiler. Modeling of the two processes in the two industrial furnaces enhances the overall understanding of the processes. The sub-models developed in this work can be applied in other similar deposit formation processes with carefully-defined boundary conditions.
Resumo:
More discussion is required on how and which types of biomass should be used to achieve a significant reduction in the carbon load released into the atmosphere in the short term. The energy sector is one of the largest greenhouse gas (GHG) emitters and thus its role in climate change mitigation is important. Replacing fossil fuels with biomass has been a simple way to reduce carbon emissions because the carbon bonded to biomass is considered as carbon neutral. With this in mind, this thesis has the following objectives: (1) to study the significance of the different GHG emission sources related to energy production from peat and biomass, (2) to explore opportunities to develop more climate friendly biomass energy options and (3) to discuss the importance of biogenic emissions of biomass systems. The discussion on biogenic carbon and other GHG emissions comprises four case studies of which two consider peat utilization, one forest biomass and one cultivated biomasses. Various different biomass types (peat, pine logs and forest residues, palm oil, rapeseed oil and jatropha oil) are used as examples to demonstrate the importance of biogenic carbon to life cycle GHG emissions. The biogenic carbon emissions of biomass are defined as the difference in the carbon stock between the utilization and the non-utilization scenarios of biomass. Forestry-drained peatlands were studied by using the high emission values of the peatland types in question to discuss the emission reduction potential of the peatlands. The results are presented in terms of global warming potential (GWP) values. Based on the results, the climate impact of the peat production can be reduced by selecting high-emission-level peatlands for peat production. The comparison of the two different types of forest biomass in integrated ethanol production in pulp mill shows that the type of forest biomass impacts the biogenic carbon emissions of biofuel production. The assessment of cultivated biomasses demonstrates that several selections made in the production chain significantly affect the GHG emissions of biofuels. The emissions caused by biofuel can exceed the emissions from fossil-based fuels in the short term if biomass is in part consumed in the process itself and does not end up in the final product. Including biogenic carbon and other land use carbon emissions into the carbon footprint calculations of biofuel reveals the importance of the time frame and of the efficiency of biomass carbon content utilization. As regards the climate impact of biomass energy use, the net impact on carbon stocks (in organic matter of soils and biomass), compared to the impact of the replaced energy source, is the key issue. Promoting renewable biomass regardless of biogenic GHG emissions can increase GHG emissions in the short term and also possibly in the long term.
Resumo:
This study combines several projects related to the flows in vessels with complex shapes representing different chemical apparata. Three major cases were studied. The first one is a two-phase plate reactor with a complex structure of intersecting micro channels engraved on one plate which is covered by another plain plate. The second case is a tubular microreactor, consisting of two subcases. The first subcase is a multi-channel two-component commercial micromixer (slit interdigital) used to mix two liquid reagents before they enter the reactor. The second subcase is a micro-tube, where the distribution of the heat generated by the reaction was studied. The third case is a conventionally packed column. However, flow, reactions or mass transfer were not modeled. Instead, the research focused on how to describe mathematically the realistic geometry of the column packing, which is rather random and can not be created using conventional computeraided design or engineering (CAD/CAE) methods. Several modeling approaches were used to describe the performance of the processes in the considered vessels. Computational fluid dynamics (CFD) was used to describe the details of the flow in the plate microreactor and micromixer. A space-averaged mass transfer model based on Fick’s law was used to describe the exchange of the species through the gas-liquid interface in the microreactor. This model utilized data, namely the values of the interfacial area, obtained by the corresponding CFD model. A common heat transfer model was used to find the heat distribution in the micro-tube. To generate the column packing, an additional multibody dynamic model was implemented. Auxiliary simulation was carried out to determine the position and orientation of every packing element in the column. This data was then exported into a CAD system to generate desirable geometry, which could further be used for CFD simulations. The results demonstrated that the CFD model of the microreactor could predict the flow pattern well enough and agreed with experiments. The mass transfer model allowed to estimate the mass transfer coefficient. Modeling for the second case showed that the flow in the micromixer and the heat transfer in the tube could be excluded from the larger model which describes the chemical kinetics in the reactor. Results of the third case demonstrated that the auxiliary simulation could successfully generate complex random packing not only for the column but also for other similar cases.
Resumo:
Heat shock factors (HSFs) are an evolutionarily well conserved family of transcription factors that coordinate stress-induced gene expression and direct versatile physiological processes in eukaryote organisms. The essentiality of HSFs for cellular homeostasis has been well demonstrated, mainly through HSF1-induced transcription of heat shock protein (HSP) genes. HSFs are important regulators of many fundamental processes such as gametogenesis, metabolic control and aging, and are involved in pathological conditions including cancer progression and neurodegenerative diseases. In each of the HSF-mediated processes, however, the detailed mechanisms of HSF family members and their complete set of target genes have remained unknown. Recently, rapid advances in chromatin studies have enabled genome-wide characterization of protein binding sites in a high resolution and in an unbiased manner. In this PhD thesis, these novel methods that base on chromatin immunoprecipitation (ChIP) are utilized and the genome-wide target loci for HSF1 and HSF2 are identified in cellular stress responses and in developmental processes. The thesis and its original publications characterize the individual and shared target genes of HSF1 and HSF2, describe HSF1 as a potent transactivator, and discover HSF2 as an epigenetic regulator that coordinates gene expression throughout the cell cycle progression. In male gametogenesis, novel physiological functions for HSF1 and HSF2 are revealed and HSFs are demonstrated to control the expression of X- and Y-chromosomal multicopy genes in a silenced chromatin environment. In stressed human cells, HSF1 and HSF2 are shown to coordinate the expression of a wide variety of genes including genes for chaperone machinery, ubiquitin, regulators of cell cycle progression and signaling. These results highlight the importance of cell type and cell cycle phase in transcriptional responses, reveal the myriad of processes that are adjusted in a stressed cell and describe novel mechanisms that maintain transcriptional memory in mitotic cell division.
Resumo:
The term urban heat island (UHI) refers to the common situation in which the city is warmer than its rural surroundings. In this dissertation, the local climate, and especially the UHI, of the coastal city of Turku (182,000 inh.), SW Finland, was studied in different spatial and temporal scales. The crucial aim was to sort out the urban, topographical and water body impact on temperatures at different seasons and times of the day. In addition, the impact of weather on spatiotemporal temperature differences was studied. The relative importance of environmental factors was estimated with different modelling approaches and a large number of explanatory variables with various spatial scales. The city centre is the warmest place in the Turku area. Temperature excess relative to the coldest sites, i.e. rural areas about 10 kilometers to the NE from the centre, is on average 2 °C. Occasionally, the UHI intensity can be even 10 °C. The UHI does not prevail continuously in the Turku area, but occasionally the city centre can be colder than its surroundings. Then the term urban cool island or urban cold island (UCI) is used. The UCI is most common in daytime in spring and in summer, whereas during winter the UHI prevails throughout the day. On average, the spatial temperature differences are largest in summer, whereas the single extreme values are often observed in winter. The seasonally varying sea temperature causes the shift of relatively warm areas towards the coast in autumn and inland in spring. In the long term, urban land use was concluded to be the most important factor causing spatial temperature differences in the Turku area. The impact was mainly a warming one. The impact of water bodies was emphasised in spring and autumn, when the water temperature was relatively cold and warm, respectively. The impact of topography was on average the weakest, and was seen mainly in proneness of relatively low-lying places for cold air drainage during night-time. During inversions, however, the impact of topography was emphasised, occasionally outperforming those of urban land use and water bodies.
Resumo:
Demand for the use of energy systems, entailing high efficiency as well as availability to harness renewable energy sources, is a key issue in order to tackling the threat of global warming and saving natural resources. Organic Rankine cycle (ORC) technology has been identified as one of the most promising technologies in recovering low-grade heat sources and in harnessing renewable energy sources that cannot be efficiently utilized by means of more conventional power systems. The ORC is based on the working principle of Rankine process, but an organic working fluid is adopted in the cycle instead of steam. This thesis presents numerical and experimental results of the study on the design of small-scale ORCs. Two main applications were selected for the thesis: waste heat re- covery from small-scale diesel engines concentrating on the utilization of the exhaust gas heat and waste heat recovery in large industrial-scale engine power plants considering the utilization of both the high and low temperature heat sources. The main objective of this work was to identify suitable working fluid candidates and to study the process and turbine design methods that can be applied when power plants based on the use of non-conventional working fluids are considered. The computational work included the use of thermodynamic analysis methods and turbine design methods that were based on the use of highly accurate fluid properties. In addition, the design and loss mechanisms in supersonic ORC turbines were studied by means of computational fluid dynamics. The results indicated that the design of ORC is highly influenced by the selection of the working fluid and cycle operational conditions. The results for the turbine designs in- dicated that the working fluid selection should not be based only on the thermodynamic analysis, but requires also considerations on the turbine design. The turbines tend to be fast rotating, entailing small blade heights at the turbine rotor inlet and highly supersonic flow in the turbine flow passages, especially when power systems with low power outputs are designed. The results indicated that the ORC is a potential solution in utilizing waste heat streams both at high and low temperatures and both in micro and larger scale appli- cations.
Resumo:
0-meridiaani: Ferro.