84 resultados para test reactor


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Innovative gas cooled reactors, such as the pebble bed reactor (PBR) and the gas cooled fast reactor (GFR) offer higher efficiency and new application areas for nuclear energy. Numerical methods were applied and developed to analyse the specific features of these reactor types with fully three dimensional calculation models. In the first part of this thesis, discrete element method (DEM) was used for a physically realistic modelling of the packing of fuel pebbles in PBR geometries and methods were developed for utilising the DEM results in subsequent reactor physics and thermal-hydraulics calculations. In the second part, the flow and heat transfer for a single gas cooled fuel rod of a GFR were investigated with computational fluid dynamics (CFD) methods. An in-house DEM implementation was validated and used for packing simulations, in which the effect of several parameters on the resulting average packing density was investigated. The restitution coefficient was found out to have the most significant effect. The results can be utilised in further work to obtain a pebble bed with a specific packing density. The packing structures of selected pebble beds were also analysed in detail and local variations in the packing density were observed, which should be taken into account especially in the reactor core thermal-hydraulic analyses. Two open source DEM codes were used to produce stochastic pebble bed configurations to add realism and improve the accuracy of criticality calculations performed with the Monte Carlo reactor physics code Serpent. Russian ASTRA criticality experiments were calculated. Pebble beds corresponding to the experimental specifications within measurement uncertainties were produced in DEM simulations and successfully exported into the subsequent reactor physics analysis. With the developed approach, two typical issues in Monte Carlo reactor physics calculations of pebble bed geometries were avoided. A novel method was developed and implemented as a MATLAB code to calculate porosities in the cells of a CFD calculation mesh constructed over a pebble bed obtained from DEM simulations. The code was further developed to distribute power and temperature data accurately between discrete based reactor physics and continuum based thermal-hydraulics models to enable coupled reactor core calculations. The developed method was also found useful for analysing sphere packings in general. CFD calculations were performed to investigate the pressure losses and heat transfer in three dimensional air cooled smooth and rib roughened rod geometries, housed inside a hexagonal flow channel representing a sub-channel of a single fuel rod of a GFR. The CFD geometry represented the test section of the L-STAR experimental facility at Karlsruhe Institute of Technology and the calculation results were compared to the corresponding experimental results. Knowledge was gained of the adequacy of various turbulence models and of the modelling requirements and issues related to the specific application. The obtained pressure loss results were in a relatively good agreement with the experimental data. Heat transfer in the smooth rod geometry was somewhat under predicted, which can partly be explained by unaccounted heat losses and uncertainties. In the rib roughened geometry heat transfer was severely under predicted by the used realisable k − epsilon turbulence model. An additional calculation with a v2 − f turbulence model showed significant improvement in the heat transfer results, which is most likely due to the better performance of the model in separated flow problems. Further investigations are suggested before using CFD to make conclusions of the heat transfer performance of rib roughened GFR fuel rod geometries. It is suggested that the viewpoints of numerical modelling are included in the planning of experiments to ease the challenging model construction and simulations and to avoid introducing additional sources of uncertainties. To facilitate the use of advanced calculation approaches, multi-physical aspects in experiments should also be considered and documented in a reasonable detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heat transfer effectiveness in nuclear rod bundles is of great importance to nuclear reactor safety and economics. An important design parameter is the Critical Heat Flux (CHF), which limits the transferred heat from the fuel to the coolant. The CHF is determined by flow behaviour, especially the turbulence created inside the fuel rod bundle. Adiabatic experiments can be used to characterize the flow behaviour separately from the heat transfer phenomena in diabatic flow. To enhance the turbulence, mixing vanes are attached to spacer grids, which hold the rods in place. The vanes either make the flow swirl around a single sub-channel or induce cross-mixing between adjacent sub-channels. In adiabatic two-phase conditions an important phenomenon that can be investigated is the effect of the spacer on canceling the lift force, which collects the small bubbles to the rod surfaces leading to decreased CHF in diabatic conditions and thus limits the reactor power. Computational Fluid Dynamics (CFD) can be used to simulate the flow numerically and to test how different spacer configurations affect the flow. Experimental data is needed to validate and verify the used CFD models. Especially the modeling of turbulence is challenging even for single-phase flow inside the complex sub-channel geometry. In two-phase flow other factors such as bubble dynamics further complicate the modeling. To investigate the spacer grid effect on two-phase flow, and to provide further experimental data for CFD validation, a series of experiments was run on an adiabatic sub-channel flow loop using a duct-type spacer grid with different configurations. Utilizing the wire-mesh sensor technology, the facility gives high resolution experimental data in both time and space. The experimental results indicate that the duct-type spacer grid is less effective in canceling the lift force effect than the egg-crate type spacer tested earlier.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of exact coordinates of pebbles and fuel particles of pebble bed reactor modelling becoming possible in Monte Carlo reactor physics calculations is an important development step. This allows exact modelling of pebble bed reactors with realistic pebble beds without the placing of pebbles in regular lattices. In this study the multiplication coefficient of the HTR-10 pebble bed reactor is calculated with the Serpent reactor physics code and, using this multiplication coefficient, the amount of pebbles required for the critical load of the reactor. The multiplication coefficient is calculated using pebble beds produced with the discrete element method and three different material libraries in order to compare the results. The received results are lower than those from measured at the experimental reactor and somewhat lower than those gained with other codes in earlier studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Suomen osakeyhtiölain mukaan varoja ei saa jakaa, jos jaosta päätettäessä tiedetään tai pitäisi tietää yhtiön olevan maksukyvytön tai jaon aiheuttavan maksukyvyttömyyden. Ongelmallista on, että maksukykyä ei ole selvästi määritelty laissa tai hallituksen esityksessä. Tilintarkastuslain mukaan tilintarkastajan on siten huomautettava, jos maksukykytestiä on rikottu, mutta tilintarkastaja joutuu yleensä määrittelemään tällaiset huomauttamista vaativat tilanteet itse. Maksukykytestistä on kirjoitettu suomalaisessa yhtiöoikeuden ja laskentatoimen kirjallisuudessa melko kattavasti. Kuitenkin tilintarkastajaa koskeva näkökulma on saanut osakseen suhteellisen vähän huomiota. Tästä näkökulmasta on kirjoitettu vain joitakin korkeakoulujen tutkielmia sekä lyhyehköjä ammatillisia seminaariesityksiä. Tämän tutkielman tavoitteena on ollut koota laaja yleiskuva siitä, miten tilintarkastajat itse kokevat asemansa ja tehtävänsä yllä kuvatuissa tilanteessa. Tutkielmassa on käyty läpi aikaisempaa yhtiöoikeuden ja laskentatoimen kirjallisuudessa ja seminaariesityksissä esitettyä aineistoa. Lisäksi tutkielmaa varten tehtiin suomalaisille tilintarkastajille kohdennettu Internet-pohjainen kysely. Tutkielma selkeyttää kuvaa siitä, miten tilintarkastajat toimivat yllä kuvatussa tilanteessa ja miten he ovat sopeuttaneet toimiaan yhteiskunnan institutionaalisen asetelman muututtua. Kirjallisuuden pohjalta tapahtuva teoreettinen analyysi on yhdistetty kyselyyn siitä, miten tilintarkastajat käytännössä toimivat. Tutkimuksen perustana olevaa tietoa on analysoitu pääosin kyselytutkimuksen menetelmin, mutta myös tilastollisen tutkimuksen menetelmiä on käytetty. Tutkielman tuloksena tutkielmassa selvitetään tilintarkastajan tehtäviä maksukykytestin yhteydessä. Tuloksena voidaan myös todeta, että tilintarkastaja ei suorita varojenjaossa tarvittavan maksukyvyn arvioinnin kannalta keskeisiä tarkastustoimenpiteitä ainoastaan tilikauden päättymisen jälkeen. Päinvastoin, tällaisia tarkastustoimenpiteitä suoritetaan enemmän tai vähemmän koko tilintarkastuksen aikana. Lisäksi vaikuttaisi siltä, että tilintarkastajan oma suhtautuminen maksukykytestiin on ainakin jossain määrin merkityksellinen sen kannalta, kuinka paljon tarkastustoimenpiteitä tehdään ja kuinka paljon maksukyvystä ja siihen liittyvistä puutteista raportoidaan yhtiön johdolle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A small break loss-of-coolant accident (SBLOCA) is one of problems investigated in an NPP operation. Such accident can be analyzed using an experiment facility and TRACE thermal-hydraulic system code. A series of SBLOCA experiments was carried out on Parallel Channel Test Loop (PACTEL) facility, exploited together with Technical Research Centre of Finland VTT Energy and Lappeenranta University of Technology (LUT), in order to investigate two-phase phenomena related to a VVER-type reactor. The experiments and a TRACE model of the PACTEL facility are described in the paper. In addition, there is the TRACE code description with main field equations. At the work, calculations of a SBLOCA series are implemented and after the calculations, the thesis discusses the validation of TRACE and concludes with an assessment of the usefulness and accuracy of the code in calculating small breaks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis addresses the coolability of porous debris beds in the context of severe accident management of nuclear power reactors. In a hypothetical severe accident at a Nordic-type boiling water reactor, the lower drywell of the containment is flooded, for the purpose of cooling the core melt discharged from the reactor pressure vessel in a water pool. The melt is fragmented and solidified in the pool, ultimately forming a porous debris bed that generates decay heat. The properties of the bed determine the limiting value for the heat flux that can be removed from the debris to the surrounding water without the risk of re-melting. The coolability of porous debris beds has been investigated experimentally by measuring the dryout power in electrically heated test beds that have different geometries. The geometries represent the debris bed shapes that may form in an accident scenario. The focus is especially on heap-like, realistic geometries which facilitate the multi-dimensional infiltration (flooding) of coolant into the bed. Spherical and irregular particles have been used to simulate the debris. The experiments have been modeled using 2D and 3D simulation codes applicable to fluid flow and heat transfer in porous media. Based on the experimental and simulation results, an interpretation of the dryout behavior in complex debris bed geometries is presented, and the validity of the codes and models for dryout predictions is evaluated. According to the experimental and simulation results, the coolability of the debris bed depends on both the flooding mode and the height of the bed. In the experiments, it was found that multi-dimensional flooding increases the dryout heat flux and coolability in a heap-shaped debris bed by 47–58% compared to the dryout heat flux of a classical, top-flooded bed of the same height. However, heap-like beds are higher than flat, top-flooded beds, which results in the formation of larger steam flux at the top of the bed. This counteracts the effect of the multi-dimensional flooding. Based on the measured dryout heat fluxes, the maximum height of a heap-like bed can only be about 1.5 times the height of a top-flooded, cylindrical bed in order to preserve the direct benefit from the multi-dimensional flooding. In addition, studies were conducted to evaluate the hydrodynamically representative effective particle diameter, which is applied in simulation models to describe debris beds that consist of irregular particles with considerable size variation. The results suggest that the effective diameter is small, closest to the mean diameter based on the number or length of particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work was to calibrate the material properties including strength and strain values for different material zones of ultra-high strength steel (UHSS) welded joints under monotonic static loading. The UHSS is heat sensitive and softens by heat due to welding, the affected zone is heat affected zone (HAZ). In this regard, cylindrical specimens were cut out from welded joints of Strenx® 960 MC and Strenx® Tube 960 MH, were examined by tensile test. The hardness values of specimens’ cross section were measured. Using correlations between hardness and strength, initial material properties were obtained. The same size specimen with different zones of material same as real specimen were created and defined in finite element method (FEM) software with commercial brand Abaqus 6.14-1. The loading and boundary conditions were defined considering tensile test values. Using initial material properties made of hardness-strength correlations (true stress-strain values) as Abaqus main input, FEM is utilized to simulate the tensile test process. By comparing FEM Abaqus results with measured results of tensile test, initial material properties will be revised and reused as software input to be fully calibrated in such a way that FEM results and tensile test results deviate minimum. Two type of different S960 were used including 960 MC plates, and structural hollow section 960 MH X-joint. The joint is welded by BöhlerTM X96 filler material. In welded joints, typically the following zones appear: Weld (WEL), Heat affected zone (HAZ) coarse grained (HCG) and fine grained (HFG), annealed zone, and base material (BaM). Results showed that: The HAZ zone is softened due to heat input while welding. For all the specimens, the softened zone’s strength is decreased and makes it a weakest zone where fracture happens while loading. Stress concentration of a notched specimen can represent the properties of notched zone. The load-displacement diagram from FEM modeling matches with the experiments by the calibrated material properties by compromising two correlations of hardness and strength.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Today, the user experience and usability in software application are becoming a major design issue due to the adaptation of many processes using new technologies. Therefore, the study of the user experience and usability might be included in every software development project and, thus, they should be tested to get traceable results. As a result of different testing methods to evaluate the concepts, a non-expert on the topic might have doubts on which option he/she should opt for and how to interpret the outcomes of the process. This work aims to create a process to ease the whole testing methodology based on the process created by Seffah et al. and a supporting software tool to follow the procedure of these testing methods for the user experience and usability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this master’s thesis is to gain an understanding of passive safety systems’ role in modern nuclear reactors projects and to research the failure modes of passive decay heat removal safety systems which use phenomenon of natural circulation. Another purpose is to identify the main physical principles and phenomena which are used to establish passive safety tools in nuclear power plants. The work describes passive decay heat removal systems used in AES-2006 project and focuses on the behavior of SPOT PG system. The descriptions of the main large-scale research facilities of the passive safety systems of the AES-2006 power plant are also included. The work contains the calculations of the SPOT PG system, which was modeled with thermal-hydraulic system code TRACE. The dimensions of the calculation model are set according to the dimensions of the real SPOT PG system. In these calculations three parameters are investigated as a function of decay heat power: the pressure of the system, the natural circulation mass flow rate around the closed loop, and the level of liquid in the downcomer. The purpose of the calculations is to test the ability of the SPOT PG system to remove the decay heat from the primary side of the nuclear reactor in case of failure of one, two, or three loops out of four. The calculations show that three loops of the SPOT PG system have adequate capacity to provide the necessary level of safety. In conclusion, the work supports the view that passive systems could be widely spread in modern nuclear projects.