85 resultados para pulp zone
Resumo:
This thesis studies how the case company could digitalize its supply chain and what kind of advantages this would create in the light of supply chain efficiency. The case company manufactures several pulp products that are used for paper, fabrics and packaging products by customers worldwide. The paper and pulp industry has been paying more and more attention to increasing supply chain efficiency with new operating and service models made possible by today’s information technology. The main focus of this study is on the supply chain between the case company and its key customers and the goal is to find ways to make the operations between them as efficient as possible. The study relays heavily on collaboration techniques and digitalization technologies. In addition to a theoretical framework, the study includes several empirical studies that offer real-life examples of how these theories and technologies are applied in operating environments similar to the case company. A plan with strategic and operational levels is created according to the findings of the previous sections to support the case company’s future operations. The plan is based on an RFID-supported collaboration model that aims to advance information sharing between the supply chain partners. The time for an RFID-investment is sought to be very optimal and the benefits of such system to be noteworthy, but challenging to measure in monetary terms.
Resumo:
The objective of this project was to introduce a new software product to pulp industry, a new market for case company. An optimization based scheduling tool has been developed to allow pulp operations to better control their production processes and improve both production efficiency and stability. Both the work here and earlier research indicates that there is a potential for savings around 1-5%. All the supporting data is available today coming from distributed control systems, data historians and other existing sources. The pulp mill model together with the scheduler, allows what-if analyses of the impacts and timely feasibility of various external actions such as planned maintenance of any particular mill operation. The visibility gained from the model proves also to be a real benefit. The aim is to satisfy demand and gain extra profit, while achieving the required customer service level. Research effort has been put both in understanding the minimum features needed to satisfy the scheduling requirements in the industry and the overall existence of the market. A qualitative study was constructed to both identify competitive situation and the requirements vs. gaps on the market. It becomes clear that there is no such system on the marketplace today and also that there is room to improve target market overall process efficiency through such planning tool. This thesis also provides better overall understanding of the different processes in this particular industry for the case company.
Resumo:
The aim of this thesis work was to verify the possibility to produce tray packages directly from pulp sheets using press forming techniques. The different existing raw materials of pulp, various sources of molded pulp and different methods of production of molded pulp were studied. Nine different raw materials which were used for experimental work were provided by Stora Enso mills, and Stora Enso Research Centre, Imatra, Finland. The laboratory tests were carried out using LUT Adjustable packaging line at Lappeenranta University of Technology. The results prove that long virgin fibres of pine pulp seems to have better formability with high moisture content compared to others. No significant improvements were noticed with conditioned samples, never the less far studies has to be done to find optimal conditions for production. The results indicated the possibility for making pressformed tray from two different pulp qualities (Sunila pulp and Enopine). The method could prove to be beneficiary as the production line could be shortened and investment in board machines could be avoided if the trays were pressed directly from pulp sheets. Also the labour costs would be reduced. However, there is much work to be done before the quality of a tray produced out of a pulp sheet is comparable to a tray produced out of tray board.
Resumo:
The pulp and paper industry is currently facing broad structural changes due to global shifts in demand and supply. These changes have significant impacts on national economies worldwide. In this paper, we describe the recent trends in the pulp and recovered paper (RP) production, and estimate augmented gravity models of bilateral trade for chemical pulp and RP exports with panel data. According to our results, there is some variation in the effects of the traditional gravity-model variables between pulp grades and RP. The results imply also that, in comparison to export supply, import demand plays a larger role in determining the volume of exports. Finally, it is evident that Asia, particularly China, is the most important driver of chemical pulp and RP trade: China is hungry for fiber, and must import to satisfy its growing needs. Moreover, the speed of China’s growth in chemical pulp and RP imports has been driving the increased significance of planted forests in the exports of hardwood pulp (BHKP) as well.
Resumo:
The pulp and paper industry is currently facing broad structural changes due to global shifts in demand and supply. These changes have significant impacts on national economies worldwide. Planted forests (especially eucalyptus) and recovered paper have quickly increased their importance as raw material for paper and paperboard production. Although advances in information and communication technologies could reduce the demand for communication papers, and the growth of paper consumption has indeed flattened in developed economies, particularly in North America and Western Europe, the consumption is increasing on a global scale. Moreover, the focal point of production and consumption is moving from the Western world to the rapidly growing markets of Southeast Asia. This study analyzes how the so-called megatrends (globalization, technological development, and increasing environmental awareness) affect the pulp and paper industry’s external environment, and seeks reliable ways to incorporate the impact of the megatrends on the models concerning the demand, trade, and use of paper and pulp. The study expands current research in several directions and points of view, for example, by applying and incorporating several quantitative methods and different models. As a result, the thesis makes a significant contribution to better understand and measure the impacts of structural changes on the pulp and paper industry. It also provides some managerial and policy implications.
Resumo:
Laser cutting implementation possibilities into paper making machine was studied as the main objective of the work. Laser cutting technology application was considered as a replacement tool for conventional cutting methods used in paper making machines for longitudinal cutting such as edge trimming at different paper making process and tambour roll slitting. Laser cutting of paper was tested in 70’s for the first time. Since then, laser cutting and processing has been applied for paper materials with different level of success in industry. Laser cutting can be employed for longitudinal cutting of paper web in machine direction. The most common conventional cutting methods include water jet cutting and rotating slitting blades applied in paper making machines. Cutting with CO2 laser fulfils basic requirements for cutting quality, applicability to material and cutting speeds in all locations where longitudinal cutting is needed. Literature review provided description of advantages, disadvantages and challenges of laser technology when it was applied for cutting of paper material with particular attention to cutting of moving paper web. Based on studied laser cutting capabilities and problem definition of conventional cutting technologies, preliminary selection of the most promising application area was carried out. Laser cutting (trimming) of paper web edges in wet end was estimated to be the most promising area where it can be implemented. This assumption was made on the basis of rate of web breaks occurrence. It was found that up to 64 % of total number of web breaks occurred in wet end, particularly in location of so called open draws where paper web was transferred unsupported by wire or felt. Distribution of web breaks in machine cross direction revealed that defects of paper web edge was the main reason of tearing initiation and consequent web break. The assumption was made that laser cutting was capable of improvement of laser cut edge tensile strength due to high cutting quality and sealing effect of the edge after laser cutting. Studies of laser ablation of cellulose supported this claim. Linear energy needed for cutting was calculated with regard to paper web properties in intended laser cutting location. Calculated linear cutting energy was verified with series of laser cutting. Practically obtained laser energy needed for cutting deviated from calculated values. This could be explained by difference in heat transfer via radiation in laser cutting and different absorption characteristics of dry and moist paper material. Laser cut samples (both dry and moist (dry matter content about 25-40%)) were tested for strength properties. It was shown that tensile strength and strain break of laser cut samples are similar to corresponding values of non-laser cut samples. Chosen method, however, did not address tensile strength of laser cut edge in particular. Thus, the assumption of improving strength properties with laser cutting was not fully proved. Laser cutting effect on possible pollution of mill broke (recycling of trimmed edge) was carried out. Laser cut samples (both dry and moist) were tested on the content of dirt particles. The tests revealed that accumulation of dust particles on the surface of moist samples can take place. This has to be taken into account to prevent contamination of pulp suspension when trim waste is recycled. Material loss due to evaporation during laser cutting and amount of solid residues after cutting were evaluated. Edge trimming with laser would result in 0.25 kg/h of solid residues and 2.5 kg/h of lost material due to evaporation. Schemes of laser cutting implementation and needed laser equipment were discussed. Generally, laser cutting system would require two laser sources (one laser source for each cutting zone), set of beam transfer and focusing optics and cutting heads. In order to increase reliability of system, it was suggested that each laser source would have double capacity. That would allow to perform cutting employing one laser source working at full capacity for both cutting zones. Laser technology is in required level at the moment and do not require additional development. Moreover, capacity of speed increase is high due to availability high power laser sources what can support the tendency of speed increase of paper making machines. Laser cutting system would require special roll to maintain cutting. The scheme of such roll was proposed as well as roll integration into paper making machine. Laser cutting can be done in location of central roll in press section, before so-called open draw where many web breaks occur, where it has potential to improve runability of a paper making machine. Economic performance of laser cutting was done as comparison of laser cutting system and water jet cutting working in the same conditions. It was revealed that laser cutting would still be about two times more expensive compared to water jet cutting. This is mainly due to high investment cost of laser equipment and poor energy efficiency of CO2 lasers. Another factor is that laser cutting causes material loss due to evaporation whereas water jet cutting almost does not cause material loss. Despite difficulties of laser cutting implementation in paper making machine, its implementation can be beneficial. The crucial role in that is possibility to improve cut edge strength properties and consequently reduce number of web breaks. Capacity of laser cutting to maintain cutting speeds which exceed current speeds of paper making machines what is another argument to consider laser cutting technology in design of new high speed paper making machines.
Resumo:
The aim of this thesis is to define effects of lignin separation process on Pulp mill chemical balance especially on sodium/sulphur-balance. The objective is to develop a simulation model with WinGEMS Process Simulator and use that model to simulate the chemical balances and process changes. The literature part explains what lignin is and how kraft pulp is produced. It also introduces to the methods that can be used to extract lignin from black liquor stream and how those methods affect the pulping process. In experimental part seven different cases are simulated with the created simulation model. The simulations are based on selected reference mill that produces 500 000 tons of bleached air-dried (90 %) pulp per year. The simulations include the chemical balance calculation and the estimated production increase. Based on the simulations the heat load of the recovery boiler can be reduced and the pulp production increased when lignin is extracted. The simulations showed that decreasing the waste acid stream intake from the chlorine dioxide plant is an effective method to control the sulphidity level when about 10 % of lignin is extracted. With higher lignin removal rates the in-mill sulphuric acid production has been discovered to be a better alternative to the sulphidity control.
Resumo:
This master thesis presents a study on the requisite cooling of an activated sludge process in paper and pulp industry. The energy consumption of paper and pulp industry and it’s wastewater treatment plant in particular is relatively high. It is therefore useful to understand the wastewater treatment process of such industries. The activated sludge process is a biological mechanism which degrades carbonaceous compounds that are present in waste. The modified activated sludge model constructed here aims to imitate the bio-kinetics of an activated sludge process. However, due to the complicated non-linear behavior of the biological process, modelling this system is laborious and intriguing. We attempt to find a system solution first using steady-state modelling of Activated Sludge Model number 1 (ASM1), approached by Euler’s method and an ordinary differential equation solver. Furthermore, an enthalpy study of paper and pulp industry’s vital pollutants was carried out and applied to revise the temperature shift over a period of time to formulate the operation of cooling water. This finding will lead to a forecast of the plant process execution in a cost-effective manner and management of effluent efficiency. The final stage of the thesis was achieved by optimizing the steady state of ASM1.