107 resultados para lanthanide(III)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Basel-säännökset ovat kansainvälisesti yhtenäistetyt vakavaraisuussäännökset, jotka Kansainvälisen järjestelypankin yhteydessä toimiva Baselin komitea on luonut. Tällä hetkellä voimassa ovat Basel II-säännökset, mutta Baselin komitea on valmistellut finanssikriisin osoittamien puutteiden vuoksi uudet Basel III-säännökset, jotka rakentuvat Basel II-säännösten pohjalta. Vuonna 2008 alkanut finanssikriisi on osoittanut pankkien vakavaraisuuden sääntelyn tärkeyden, koska finanssikriisi paljasti suuria puutteita pankkien vakavaraisuus- ja maksuvalmiussääntelyssä. Basel III-säännösten myötä pankeilta tullaan vaatimaan nykyistä enemmän ja korkealaatuisempia omia varoja. Basel IIIsäännösten keskeisiä tavoitteita ovat pankkien kriisinsietokyvyn parantaminen ja järjestelmäriskien pienentäminen. Siirtymäaika tiukempiin vakavaraisuussäännöksiin on tarkoitus alkaa vuodesta 2013 vaiheittain ja täysimääräisesti Basel III-säännökset olisivat voimassa vuoden 2019 alusta. Tutkimuksen tarkoitus on analysoida millaisia muutoksia Basel III-säännökset aiheuttavat pankin vakavaraisuuteen, omien varojen laskentaan sekä toimintaan. Tutkimus on kvalitatiivinen casetutkimus, joka toteutettiin Suomessa toimivassa talletuspankissa. Tutkimus pohjautuu aiheeseen liittyvään kirjallisuuteen sekä pankkitoimintaan liittyviin teorioihin. Näiden lisäksi tutkimuksessa on hyödynnetty casepankissa tehtyjä haastatteluja sekä casepankin sisäisiä ohjeistuksia ja raportteja liittyen pankin vakavaraisuuteen ja sen laskentaan. Basel III-vakavaraisuusuudistuksella tulee olemaan merkittäviä vaikutuksia tutkimuksen kohteena olevan pankin vakavaraisuuteen ja pääomarakenteeseen. Basel III-säännökset tiukentavat omien varojen laatuvaatimuksia, kasvattavat riskipainotettuja saamisia ja korottavat vähimmäisvakavaraisuuden tasoa. Lisäksi pankkeja tulee koskemaan jatkossa kaksi täysin uutta vakavaraisuusvaatimusta: maksuvalmiusvaatimus ja pysyvän varainhankinnan vaatimus. Tällä hetkellä vallitseva matala korkotaso laskee pankkien tulostasoa, joten tästä aiheutuu vielä omat lisähaasteensa pankkien kannattavuudelle ja vakavaraisuuden hallinnalle.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soitinnus: orkesteri.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lanthanides represent the chemical elements from lanthanum to lutetium. They intrinsically exhibit some very exciting photophysical properties, which can be further enhanced by incorporating the lanthanide ion into organic or inorganic sensitizing structures. A very popular approach is to conjugate the lanthanide ion to an organic chromophore structure forming lanthanide chelates. Another approach, which has quickly gained interest, is to incorporate the lanthanide ions into nanoparticle structures, thus attaining improved specific activity and binding capacity. The lanthanide-based reporters usually express strong luminescence emission, multiple narrow emission lines covering a wide wavelength range, and exceptionally long excited state lifetimes enabling timeresolved detection. Because of these properties, the lanthanide-based reporters have found widespread applications in various fields of life. This study focuses on the field of bioanalytical applications. The aim of the study was to demonstrate the utility of different lanthanide-based reporters in homogeneous Förster resonance energy transfer (FRET)-based bioaffinity assays. Several different model assays were constructed. One was a competitive bioaffinity assay that utilized energy transfer from lanthanide chelate donors to fluorescent protein acceptors. In addition to the conventional FRET phenomenon, a recently discovered non-overlapping FRET (nFRET) phenomenon was demonstrated for the first time for fluorescent proteins. The lack of spectral overlap in the nFRET mechanism provides sensitivity and versatility to energy transfer-based assays. The distance and temperature dependence of these phenomena were further studied in a DNA-hybridization assay. The distance dependence of nFRET deviated from that of FRET, and unlike FRET, nFRET demonstrated clear temperature dependence. Based on these results, a possible excitation mechanism operating in nFRET was proposed. In the study, two enzyme activity assays for caspase-3 were also constructed. One of these was a fluorescence quenching-based enzyme activity assay that utilized novel inorganic particulate reporters called upconverting phosphors (UCPs) as donors. The use of UCPs enabled the construction of a simple, rather inexpensive, and easily automated assay format that had a high throughput rate. The other enzyme activity assay took advantage of another novel reporter class, the lanthanidebinding peptides (LBPs). In this assay, energy was transferred from a LBP to a green fluorescent protein (GFP). Using the LBPs it was possible to avoid the rather laborious, often poorly repeatable, and randomly positioned chemical labeling. In most of the constructed assays, time-resolved detection was used to eliminate the interfering background signal caused by autofluorescence. The improved signal-to-background ratios resulted in increased assay sensitivity, often unobtainable in homogeneous assay formats using conventional organic fluorophores. The anti-Stokes luminescence of the UCPs, however, enabled the elimination of autofluorescence even without time-gating, thus simplifying the instrument setup. Together, the studied reporters and assay formats pave the way for increasingly sensitive, simple, and easily automated bioanalytical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The understanding and engineering of bismuth (Bi) containing semiconductor surfaces are signi cant in the development of novel semiconductor materials for electronic and optoelectronic devices such as high-e ciency solar cells, lasers and light emitting diodes. For example, a Bi surface layer can be used as a surfactant which oats on a III-V compound-semiconductor surface during the epitaxial growth of IIIV lms. This Bi surfactant layer improves the lm-growth conditions if compared to the growth without the Bi layer. Therefore, detailed knowledge of the properties of the Bi/III-V surfaces is needed. In this thesis, well-de ned surface layers containing Bi have been produced on various III-V semiconductor substrates. The properties of these Bi-induced surfaces have been measured by low-energy electron di raction (LEED), scanning-tunneling microscopy and spectroscopy (STM), and synchrotron-radiation photoelectron spectroscopy. The experimental results have been compared with theoretically calculated results to resolve the atomic structures of the studied surfaces. The main ndings of this research concern the determination of the properties of an unusual Bi-containing (2×1) surface structure, the discovery and characterization of a uniform pattern of Bi nanolines, and the optimization of the preparation conditions for this Bi-nanoline pattern.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is devoted to understanding and improving technologically important III-V compound semiconductor (e.g. GaAs, InAs, and InSb) surfaces and interfaces for devices. The surfaces and interfaces of crystalline III-V materials have a crucial role in the operation of field-effect-transistors (FET) and highefficiency solar-cells, for instance. However, the surfaces are also the most defective part of the semiconductor material and it is essential to decrease the amount of harmful surface or interface defects for the next-generation III-V semiconductor device applications. Any improvement in the crystal ordering at the semiconductor surface reduces the amount of defects and increases the material homogeneity. This is becoming more and more important when the semiconductor device structures decrease to atomic-scale dimensions. Toward that target, the effects of different adsorbates (i.e., Sn, In, and O) on the III-V surface structures and properties have been investigated in this work. Furthermore, novel thin-films have been synthesized, which show beneficial properties regarding the passivation of the reactive III-V surfaces. The work comprises ultra-high-vacuum (UHV) environment for the controlled fabrication of atomically ordered III-V(100) surfaces. The surface sensitive experimental methods [low energy electron diffraction (LEED), scanning tunneling microscopy/spectroscopy (STM/STS), and synchrotron radiation photoelectron spectroscopy (SRPES)] and computational density-functionaltheory (DFT) calculations are utilized for elucidating the atomic and electronic properties of the crucial III-V surfaces. The basic research results are also transferred to actual device tests by fabricating metal-oxide-semiconductor capacitors and utilizing the interface sensitive measurement techniques [capacitance voltage (CV) profiling, and photoluminescence (PL) spectroscopy] for the characterization. This part of the thesis includes the instrumentation of home-made UHV-compatible atomic-layer-deposition (ALD) reactor for growing good quality insulator layers. The results of this thesis elucidate the atomic structures of technologically promising Sn- and In-stabilized III-V compound semiconductor surfaces. It is shown that the Sn adsorbate induces an atomic structure with (1×2)/(1×4) surface symmetry which is characterized by Sn-group III dimers. Furthermore, the stability of peculiar ζa structure is demonstrated for the GaAs(100)-In surface. The beneficial effects of these surface structures regarding the crucial III-V oxide interface are demonstrated. Namely, it is found that it is possible to passivate the III-V surface by a careful atomic-scale engineering of the III-V surface prior to the gate-dielectric deposition. The thin (1×2)/(1×4)-Sn layer is found to catalyze the removal of harmful amorphous III-V oxides. Also, novel crystalline III-V-oxide structures are synthesized and it is shown that these structures improve the device characteristics. The finding of crystalline oxide structures is exploited by solving the atomic structure of InSb(100)(1×2) and elucidating the electronic structure of oxidized InSb(100) for the first time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The number of molecular diagnostic assays has increased tremendously in recent years.Nucleic acid diagnostic assays have been developed, especially for the detection of human pathogenic microbes and genetic markers predisposing to certain diseases. Closed-tube methods are preferred because they are usually faster and easier to perform than heterogenous methods and in addition, target nucleic acids are commonly amplified leading to risk of contamination of the following reactions by the amplification product if the reactions are opened. The present study introduces a new closed-tube switchable complementation probes based PCR assay concept where two non-fluorescent probes form a fluorescent lanthanide chelate complex in the presence of the target DNA. In this dual-probe PCR assay method one oligonucleotide probe carries a non-fluorescent lanthanide chelate and another probe a light absorbing antenna ligand. The fluorescent lanthanide chelate complex is formed only when the non-fluorescent probes are hybridized to adjacent positions into the target DNA bringing the reporter moieties in close proximity. The complex is formed by self-assembled lanthanide chelate complementation where the antenna ligand is coordinated to the lanthanide ion captured in the chelate. The complementation probes based assays with time-resolved fluorescence measurement showed low background signal level and hence, relatively high nucleic acid detection sensitivity (low picomolar target concentration). Different lanthanide chelate structures were explored and a new cyclic seven dentate lanthanide chelate was found suitable for complementation probe method. It was also found to resist relatively high PCR reaction temperatures, which was essential for the PCR assay applications. A seven-dentate chelate with two unoccupied coordination sites must be used instead of a more stable eight- or nine-dentate chelate because the antenna ligand needs to be coordinated to the free coordination sites of the lanthanide ion. The previously used linear seven-dentate lanthanide chelate was found to be unstable in PCR conditions and hence, the new cyclic chelate was needed. The complementation probe PCR assay method showed high signal-to-background ratio up to 300 due to a low background fluorescence level and the results (threshold cycles) in real-time PCR were reached approximately 6 amplification cycles earlier compared to the commonly used FRET-based closed-tube PCR method. The suitability of the complementation probe method for different nucleic acid assay applications was studied. 1) A duplex complementation probe C. trachomatis PCR assay with a simple 10-minute urine sample preparation was developed to study suitability of the method for clinical diagnostics. The performance of the C. trachomatis assay was equal to the commercial C. trachomatis nucleic acid amplification assay containing more complex sample preparation based on DNA extraction. 2) A PCR assay for the detection of HLA-DQA1*05 allele, that is used to predict the risk of type 1 diabetes, was developed to study the performance of the method in genotyping. A simple blood sample preparation was used where the nucleic acids were released from dried blood sample punches using high temperature and alkaline reaction conditions. The complementation probe HLA-DQA1*05 PCR assay showed good genotyping performance correlating 100% with the routinely used heterogenous reference assay. 3) To study the suitability of the complementation probe method for direct measurement of the target organism, e.g., in the culture media, the complementation probes were applied to amplificationfree closed-tube bacteriophage quantification by measuring M13 bacteriophage ssDNA. A low picomolar bacteriophage concentration was detected in a rapid 20- minute assay. The assay provides a quick and reliable alternative to the commonly used and relatively unreliable UV-photometry and time-consuming culture based bacteriophage detection methods and indicates that the method could also be used for direct measurement of other micro-organisms. The complementation probe PCR method has a low background signal level leading to a high signal-to-background ratio and relatively sensitive nucleic acid detection. The method is compatible with simple sample preparation and it was shown to tolerate residues of urine, blood, bacteria and bacterial culture media. The common trend in nucleic acid diagnostics is to create easy-to-use assays suitable for rapid near patient analysis. The complementation probe PCR assays with a brief sample preparation should be relatively easy to automate and hence, would allow the development of highperformance nucleic acid amplification assays with a short overall assay time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Binary probes are oligonucleotide probe pairs that hybridize adjacently to a complementary target nucleic acid. In order to detect this hybridization, the two probes can be modified with, for example, fluorescent molecules, chemically reactive groups or nucleic acid enzymes. The benefit of this kind of binary probe based approach is that the hybridization elicits a detectable signal which is distinguishable from background noise even though unbound probes are not removed by washing before measurement. In addition, the requirement of two simultaneous binding events increases specificity. Similarly to binary oligonucleotide probes, also certain enzymes and fluorescent proteins can be divided into two parts and used in separation-free assays. Split enzyme and fluorescent protein reporters have practical applications among others as tools to investigate protein-protein interactions within living cells. In this study, a novel label technology, switchable lanthanide luminescence, was introduced and used successfully in model assays for nucleic acid and protein detection. This label technology is based on a luminescent lanthanide chelate divided into two inherently non-luminescent moieties, an ion carrier chelate and a light harvesting antenna ligand. These form a highly luminescent complex when brought into close proximity; i.e., the label moieties switch from a dark state to a luminescent state. This kind of mixed lanthanide complex has the same beneficial photophysical properties as the more typical lanthanide chelates and cryptates - sharp emission peaks, long emission lifetime enabling time-resolved measurement, and large Stokes’ shift, which minimize the background signal. Furthermore, the switchable lanthanide luminescence technique enables a homogeneous assay set-up. Here, switchable lanthanide luminescence label technology was first applied to sensitive, homogeneous, single-target nucleic acid and protein assays with picomolar detection limits and high signal to background ratios. Thereafter, a homogeneous four-plex nucleic acid array-based assay was developed. Finally, the label technology was shown to be effective in discrimination of single nucleotide mismatched targets from fully matched targets and the luminescent complex formation was analyzed more thoroughly. In conclusion, this study demonstrates that the switchable lanthanide luminescencebased label technology can be used in various homogeneous bioanalytical assays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soitinnus: sello, piano.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soitinnus: orkesteri.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soitinnus: orkesteri.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Supplementum-osassa paljon tyhjiä välilehtiä.