106 resultados para district heat
Resumo:
kuv., 11 x 17 cm
Resumo:
Oxy-fuel combustion in a circulating fluidized bed (CFB) boiler appears to be a promising option for capturing CO2 in power plants. Oxy-fuel combustion is based on burning of fuel in the mixture of oxygen and re-circulated flue gas instead of air. Limestone (CaCO3) is typically used for capturing of SO2 in CFB boilers where limestone calcines to calcium oxide (CaO). Because of high CO2 concentration in oxy-fuel combustion, calcination reaction may be hindered or carbonation, the reverse reaction of calcination, may occur. Carbonation of CaO particles can cause problems especially in the circulation loop of a CFB boiler where temperature level is lower than in the furnace. The aim of the thesis was to examine carbonation of CaO in a fluidized bed heat exchanger of a CFB boiler featuring oxy-fuel combustion. The calculations and analyzing were based on measurement data from an oxy-fuel pilot plant and on 0-dimensional (0D) gas balance of a fluidized bed heat exchanger. Additionally, the objective was to develop a 1-dimensional (1D) model of a fluidized bed heat exchanger by searching a suitable pre-exponential factor for a carbonation rate constant. On the basis of gas measurement data and the 0D gas balance, it was found that the amount of fluidization gas decreased as it flew through the fluidized bed heat exchanger. Most likely the reason for this was carbonation of CaO. It was discovered that temperature has a promoting effect on the reaction rate of carbonation. With the 1D model, a suitable pre-exponential factor for the equation of carbonation rate constant was found. However, during measurements there were several uncertainties, and in the calculations plenty of assumptions were made. Besides, the temperature level in the fluidized bed heat exchanger was relatively low during the measurements. Carbonation should be considered when fluidized bed heat exchangers and the capacity of related fans are designed for a CFB boiler with oxy-fuel combustion.
Resumo:
Measurement is a tool for researching. Therefore, it is important that the measuring process is carried out correctly, without distorting the signal or the measured event. Researches of thermoelectric phenomena have been focused more on transverse thermoelectric phenomena during recent decades. Transverse Seebeck effect enables to produce thinner and faster heat flux sensor than before. Studies about transverse Seebeck effect have so far focused on materials, so in this Master’s Thesis instrumentation of transverse Seebeck effect based heat flux sensor is studied, This Master’s Thesis examines an equivalent circuit of transverse Seebeck effect heat flux sensors, their connectivity to electronics and choosing and design a right type amplifier. The research is carried out with a case study which is Gradient Heat Flux Sensors and an electrical motor. In this work, a general equivalent circuit was presented for the transverse Seebeck effect-based heat flux sensor. An amplifier was designed for the sensor of the case study, and the solution was produced for the measurement of the local heat flux of the electric motor to improve the electromagnetic compatibility.
Resumo:
High strength steel (HSS) has been in use in workshops since the 1980s. At that time, the significance of the term HSS differed from the modern conception as the maximum yield strength of HSSs has increased nearly every year. There are three different ways to make HSS. The first and oldest method is QT (quenched and tempered) followed by the TMCP (thermomechanical controlled process) and DQ (direct quenching) methods. This thesis consists of two parts, the first of which part introduces the research topic and discusses welded HSS structures by characterizing the most important variables. In the second part of the thesis, the usability of welded HSS structures is examined through a set of laboratory tests. The results of this study explain the differences in the usability of the welded HSSs made by the three different methods. The results additionally indicate that usage of different HSSs in the welded structures presumes that manufacturers know what kind of HSS they are welding. As manufacturers use greater strength HSSs in welded structures, the demands for welding rise as well. Therefore, during the manufacturing process, factors such as heat input, cooling time, weld quality, and more must be under careful observation.
Resumo:
The paper is devoted to study specific aspects of heat transfer in the combustion chamber of compression ignited reciprocating internal combustion engines and possibility to directly measure the heat flux by means of Gradient Heat Flux Sensors (GHFS). A one – dimensional single zone model proposed by Kyung Tae Yun et al. and implemented with the aid of Matlab, was used to obtain approximate picture of heat flux behavior in the combustion chamber with relation to the crank angle. The model’s numerical output was compared to the experimental results. The experiment was accomplished by A. Mityakov at four stroke diesel engine Indenor XL4D. Local heat fluxes on the surface of cylinder head were measured with fast – response, high – sensitive GHFS. The comparison of numerical data with experimental results has revealed a small deviation in obtained heat flux values throughout the cycle and different behavior of heat flux curve after Top Dead Center.
Resumo:
This master’s thesis is devoted to study different heat flux measurement techniques such as differential temperature sensors, semi-infinite surface temperature methods, calorimetric sensors and gradient heat flux sensors. The possibility to use Gradient Heat Flux Sensors (GHFS) to measure heat flux in the combustion chamber of compression ignited reciprocating internal combustion engines was considered in more detail. A. Mityakov conducted an experiment, where Gradient Heat Flux Sensor was placed in four stroke diesel engine Indenor XL4D to measure heat flux in the combustion chamber. The results which were obtained from the experiment were compared with model’s numerical output. This model (a one – dimensional single zone model) was implemented with help of MathCAD and the result of this implementation is graph of heat flux in combustion chamber in relation to the crank angle. The values of heat flux throughout the cycle obtained with aid of heat flux sensor and theoretically were sufficiently similar, but not identical. Such deviation is rather common for this type of experiment.
Resumo:
Työ käsittelee tekniikoita, joilla voidaan hyödyntää matalalämpötilaisia hukkalämpöjä kaukolämmöntuotannossa. Työ esittelee lämpöpumpputekniikkaa, jolla hukkalämmön lähteestä tulevaa lämpöä voidaan lämpötilaltaan nostaa kaukolämpöverkon tarpeita vastaavaksi. Työssä käsitellään lämpöpumppujen kylmäaineita ja niiden soveltuvuutta eri lämpötila-alueisiin. Lisäksi käsitellään hyödyntämisen taloudellisuutta ja ympäristövaikutuksia. Taloudellisuudessa käsitellään investointi- ja käyttökustannukset ja pohditaan niiden pohjalta tuotteiden kaukolämpö- ja kaukokylmähinnoittelua asiakkaille. Työ myös tarkastelee hankkeen kokonaiskannattavuutta Mäntsälän Sähkölle. Kannattavuuslaskelmissa toteutetaan herkkyystarkastelu suurimpien muuttujien osalta. Työ tarkastelee yhdistetyn kylmän- ja lämmöntuotannon soveltuvuutta Mäntsälän keskustan kaukolämpöverkon ja Kapulin kaukolämpöverkon alueelle. Soveltuvuutta tarkastellaan Suomessa ja maailmalla toteutettujen referenssien pohjalta.
Resumo:
More discussion is required on how and which types of biomass should be used to achieve a significant reduction in the carbon load released into the atmosphere in the short term. The energy sector is one of the largest greenhouse gas (GHG) emitters and thus its role in climate change mitigation is important. Replacing fossil fuels with biomass has been a simple way to reduce carbon emissions because the carbon bonded to biomass is considered as carbon neutral. With this in mind, this thesis has the following objectives: (1) to study the significance of the different GHG emission sources related to energy production from peat and biomass, (2) to explore opportunities to develop more climate friendly biomass energy options and (3) to discuss the importance of biogenic emissions of biomass systems. The discussion on biogenic carbon and other GHG emissions comprises four case studies of which two consider peat utilization, one forest biomass and one cultivated biomasses. Various different biomass types (peat, pine logs and forest residues, palm oil, rapeseed oil and jatropha oil) are used as examples to demonstrate the importance of biogenic carbon to life cycle GHG emissions. The biogenic carbon emissions of biomass are defined as the difference in the carbon stock between the utilization and the non-utilization scenarios of biomass. Forestry-drained peatlands were studied by using the high emission values of the peatland types in question to discuss the emission reduction potential of the peatlands. The results are presented in terms of global warming potential (GWP) values. Based on the results, the climate impact of the peat production can be reduced by selecting high-emission-level peatlands for peat production. The comparison of the two different types of forest biomass in integrated ethanol production in pulp mill shows that the type of forest biomass impacts the biogenic carbon emissions of biofuel production. The assessment of cultivated biomasses demonstrates that several selections made in the production chain significantly affect the GHG emissions of biofuels. The emissions caused by biofuel can exceed the emissions from fossil-based fuels in the short term if biomass is in part consumed in the process itself and does not end up in the final product. Including biogenic carbon and other land use carbon emissions into the carbon footprint calculations of biofuel reveals the importance of the time frame and of the efficiency of biomass carbon content utilization. As regards the climate impact of biomass energy use, the net impact on carbon stocks (in organic matter of soils and biomass), compared to the impact of the replaced energy source, is the key issue. Promoting renewable biomass regardless of biogenic GHG emissions can increase GHG emissions in the short term and also possibly in the long term.
Resumo:
Tavoitteet energiatehokkuuden parantamisesta ja energiantuotannon ympäristövaikutusten vähentämisestä ovat nostaneet kiinnostusta hajautettua energiantuotantoa kohtaan. Pienissä kokoluokissa ei kuitenkaan sähköntuottaminen ole kannattavaa perinteisillä menetelmillä kuten vesihöyryprosessilla. Mikrokokoluokassa (alle 50 kWe) yksi varteenotettavimmista keinoista sähköntuotantoon on mikro ORC-prosessi. Tässä kandidaatintyössä on tavoitteena löytää mikro ORC-voimaloiden potentiaalisimpia sovelluskohteita ja ratkaisuja niiden hyödyntämiseen. Selvitystyön perusteella mikro ORC-voimaloiden potentiaalisimpia sovelluskohteita ovat hukkalämpöjen hyödyntäminen teollisuus- ja energiantuotantoprosesseissa, pienet CHP-laitokset, pienet lämpölaitokset, ajoneuvojen polttomoottorit, syrjäisten kohteiden sähköntuotanto sekä aurinkokeräimien ja kaukolämpöverkon hyödyntäminen rakennusten energiaomavaraisuuden parantamisessa.
Resumo:
Heat shock factors (HSFs) are an evolutionarily well conserved family of transcription factors that coordinate stress-induced gene expression and direct versatile physiological processes in eukaryote organisms. The essentiality of HSFs for cellular homeostasis has been well demonstrated, mainly through HSF1-induced transcription of heat shock protein (HSP) genes. HSFs are important regulators of many fundamental processes such as gametogenesis, metabolic control and aging, and are involved in pathological conditions including cancer progression and neurodegenerative diseases. In each of the HSF-mediated processes, however, the detailed mechanisms of HSF family members and their complete set of target genes have remained unknown. Recently, rapid advances in chromatin studies have enabled genome-wide characterization of protein binding sites in a high resolution and in an unbiased manner. In this PhD thesis, these novel methods that base on chromatin immunoprecipitation (ChIP) are utilized and the genome-wide target loci for HSF1 and HSF2 are identified in cellular stress responses and in developmental processes. The thesis and its original publications characterize the individual and shared target genes of HSF1 and HSF2, describe HSF1 as a potent transactivator, and discover HSF2 as an epigenetic regulator that coordinates gene expression throughout the cell cycle progression. In male gametogenesis, novel physiological functions for HSF1 and HSF2 are revealed and HSFs are demonstrated to control the expression of X- and Y-chromosomal multicopy genes in a silenced chromatin environment. In stressed human cells, HSF1 and HSF2 are shown to coordinate the expression of a wide variety of genes including genes for chaperone machinery, ubiquitin, regulators of cell cycle progression and signaling. These results highlight the importance of cell type and cell cycle phase in transcriptional responses, reveal the myriad of processes that are adjusted in a stressed cell and describe novel mechanisms that maintain transcriptional memory in mitotic cell division.
Resumo:
Tämän diplomityön tarkoituksena on selvittää alueellisen lämmön- ja sähköntuotannon laskentamenetelmävalintojen vaikutuksia kasvihuonekaasupäästöihin. Työn tutkimuskysymyksenä on, onko mahdollista, että laskentamenetelmän valinnalla on suurempi vaikutus alueen kasvihuonekaasupäästöihin kuin energiantuotantotekniikan valinnalla. Laskentamenetelmävalinnoista tutkitaan tarkemmin CHP-laitoksen päästöjen allokointitavan ja sähkönpäästöjen määrittämisen vaikutuksia kasvihuonekaasupäästöihin. Tutkimusmenetelminä työssä on käytetty kirjallisuuskatsausta sekä tapaustutkimusta. Kirjallisuuskatsauksen aineistona käytetään tieteellisiä artikkeleita ja tutkimusraportteja. Tapaustutkimuksessa tutkitaan yksittäistä case-kohdetta, joka on Tampereen Härmälänrannan uudisrakennusalue, ja jossa vertaillaan maalämpöpumppua ja kaukolämpöä alueen lämmitysratkaisuina. Työn tuloksena todetaan, että on olemassa sellaisia tilanteita, joissa laskentamenetelmän valinnalla on suurempi vaikutus alueen kasvihuonekaasupäästöihin kuin energiantuotantotekniikan valinnalla. Lisäksi case-tarkastelun perusteella huomataan, että laskentamenetelmävalinnoilla on sitä suurempi merkitys, mitä enemmän CHP-laitoksessa käytetään uusiutuvaa polttoainetta. Työn johtopäätöksenä voidaan todeta, että energiantuotannon kasvihuonekaasupäästölaskennassa on syytä ymmärtää ja huomioida eri laskentamenetelmävalintojen vaikutus esitettyihin tuloksiin.
Resumo:
The basis of this thesis was to optimize heat pump that uses multiple heat sources to get competitive heating system for residential building when life cycle costs are considered. The objectives were to compile necessary information to calculate life cycle costs for heating system of residential building and start to compose of designing program for heat pump based heating systems. Examinations were made for the purchase energy need of residential building. Features of heat pump, considered refrigerant and potential heat sources were examined to find out heat production potential of heat pumps. Necessary information for life cycle cost calculation was also examined. Collected data was used in two case analyses to design selected heat production systems and calculate their life cycle costs. On the basis of case analyses heat pump based hybrid heat production systems are very competitive on life cycle cost comparison against district heating when residential building uses a lot of energy. New buildings use considerably less energy and achieved energy cost savings with heat pump systems may not be enough to cover the relatively high investment cost in reasonable time period compared to district heating system. The calculation method was found to require further development to at least include the cooling energy need of the building. Cooling demand will continue to grow in the future, which improves the heat pump based heat production systems competitiveness compared to other systems.
Resumo:
The term urban heat island (UHI) refers to the common situation in which the city is warmer than its rural surroundings. In this dissertation, the local climate, and especially the UHI, of the coastal city of Turku (182,000 inh.), SW Finland, was studied in different spatial and temporal scales. The crucial aim was to sort out the urban, topographical and water body impact on temperatures at different seasons and times of the day. In addition, the impact of weather on spatiotemporal temperature differences was studied. The relative importance of environmental factors was estimated with different modelling approaches and a large number of explanatory variables with various spatial scales. The city centre is the warmest place in the Turku area. Temperature excess relative to the coldest sites, i.e. rural areas about 10 kilometers to the NE from the centre, is on average 2 °C. Occasionally, the UHI intensity can be even 10 °C. The UHI does not prevail continuously in the Turku area, but occasionally the city centre can be colder than its surroundings. Then the term urban cool island or urban cold island (UCI) is used. The UCI is most common in daytime in spring and in summer, whereas during winter the UHI prevails throughout the day. On average, the spatial temperature differences are largest in summer, whereas the single extreme values are often observed in winter. The seasonally varying sea temperature causes the shift of relatively warm areas towards the coast in autumn and inland in spring. In the long term, urban land use was concluded to be the most important factor causing spatial temperature differences in the Turku area. The impact was mainly a warming one. The impact of water bodies was emphasised in spring and autumn, when the water temperature was relatively cold and warm, respectively. The impact of topography was on average the weakest, and was seen mainly in proneness of relatively low-lying places for cold air drainage during night-time. During inversions, however, the impact of topography was emphasised, occasionally outperforming those of urban land use and water bodies.
Resumo:
Demand for the use of energy systems, entailing high efficiency as well as availability to harness renewable energy sources, is a key issue in order to tackling the threat of global warming and saving natural resources. Organic Rankine cycle (ORC) technology has been identified as one of the most promising technologies in recovering low-grade heat sources and in harnessing renewable energy sources that cannot be efficiently utilized by means of more conventional power systems. The ORC is based on the working principle of Rankine process, but an organic working fluid is adopted in the cycle instead of steam. This thesis presents numerical and experimental results of the study on the design of small-scale ORCs. Two main applications were selected for the thesis: waste heat re- covery from small-scale diesel engines concentrating on the utilization of the exhaust gas heat and waste heat recovery in large industrial-scale engine power plants considering the utilization of both the high and low temperature heat sources. The main objective of this work was to identify suitable working fluid candidates and to study the process and turbine design methods that can be applied when power plants based on the use of non-conventional working fluids are considered. The computational work included the use of thermodynamic analysis methods and turbine design methods that were based on the use of highly accurate fluid properties. In addition, the design and loss mechanisms in supersonic ORC turbines were studied by means of computational fluid dynamics. The results indicated that the design of ORC is highly influenced by the selection of the working fluid and cycle operational conditions. The results for the turbine designs in- dicated that the working fluid selection should not be based only on the thermodynamic analysis, but requires also considerations on the turbine design. The turbines tend to be fast rotating, entailing small blade heights at the turbine rotor inlet and highly supersonic flow in the turbine flow passages, especially when power systems with low power outputs are designed. The results indicated that the ORC is a potential solution in utilizing waste heat streams both at high and low temperatures and both in micro and larger scale appli- cations.
Resumo:
Työn lähtökohtana oli tarkastella hankesuunnitteluvaiheen lämmitysjärjestelmän valintaa ja siihen vaikuttavia tekijöitä. Työssä käytettiin Case-tarkasteluna Espoon Finnoon aluetta. Rakennusosakeyhtiö Hartela voitti Espoon Finnoon ensimmäisen (Finnoo I) asemakaava-alueen suunnittelu ja toteuttamisen ideakilpailun vuoden 2012 lopussa. Finnoo I alueelle rakennettaan noin 155 000 kerrosmetriä eli huoneistot noin 4000 asukkaalle. Alueen ra-kennukset suunnitellaan energiatehokkaaksi, sekä lämmityksessä ja sähkössä on tarkoitus käyttää uusiutuvaa energiaa. Työssä käsiteltiin alueellista lämmitysjärjestelmää ja sen vaihtoehtoetoja. Työssä tutkittiin myös aurinkosähkön käytön mahdollisuutta alueella. Ensin työssä mitoitettiin rakennusten energiankulutuksen muodostuminen alustavien suunnitelmien ja arvioitujen ominaiskulu-tusten avulla. Sen jälkeen käytiin läpi mahdolliset lämmitysjärjestelmät, joita alueella voi-daan käyttää ja arvioitiin niiden aiheuttamat elinkaarikustannukset koko laskenta-ajan jak-solla. Elinkaarilaskentaan valittiin viisi toteutuskelpoisinta järjestelmää ja niistä laskettiin elinkaarikustannukset. Lisäksi laskettiin järjestelmien hiilidioksidipäästöt vuosittain. Työn tulosten pohjalta voidaan olettaa, että kokonaisvaltaisesti yhtä ainoata parasta lämmi-tysjärjestelmää alueelle ei ole, vaan kaukolämpöä, maalämpöä ja hybridijärjestelmiä tulisi käyttää alueella sekaisin. Lisäksi alue on mahdollista rakentaa niin, että alue käyttäisi nolla-lämpöalueen periaatetta, niin että rakennukset, jotka tuottavat lämpöä liikaa myisivät ne sitä rakennuksille jotka tarvitsevat sitä. Aurinkosähkön potentiaali alueella on hyvä ja sitä käyttämällä voidaan rakennusten E-lukua ja hiilidioksidipäästöjä laskea.