77 resultados para Measurement-based quantum computing
Resumo:
Time series analysis has gone through different developmental stages before the current modern approaches. These can broadly categorized as the classical time series analysis and modern time series analysis approach. In the classical one, the basic target of the analysis is to describe the major behaviour of the series without necessarily dealing with the underlying structures. On the contrary, the modern approaches strives to summarize the behaviour of the series going through its underlying structure so that the series can be represented explicitly. In other words, such approach of time series analysis tries to study the series structurally. The components of the series that make up the observation such as the trend, seasonality, regression and disturbance terms are modelled explicitly before putting everything together in to a single state space model which give the natural interpretation of the series. The target of this diploma work is to practically apply the modern approach of time series analysis known as the state space approach, more specifically, the dynamic linear model, to make trend analysis over Ionosonde measurement data. The data is time series of the peak height of F2 layer symbolized by hmF2 which is the height of high electron density. In addition, the work also targets to investigate the connection between solar activity and the peak height of F2 layer. Based on the result found, the peak height of the F2 layer has shown a decrease during the observation period and also shows a nonlinear positive correlation with solar activity.
Resumo:
Fluid handling systems account for a significant share of the global consumption of electrical energy. They also suffer from problems, which reduce their energy efficiency and increase life-cycle costs. Detecting or predicting these problems in time can make fluid handling systems more environmentally and economically sustainable to operate. In this Master’s Thesis, significant problems in fluid systems were studied and possibilities to develop variable-speed-drive-based detection methods for them was discussed. A literature review was conducted to find significant problems occurring in fluid handling systems containing pumps, fans and compressors. To find case examples for evaluating the feasibility of variable-speed-drive-based methods, queries were sent to industrial companies. As a result of this, the possibility to detect heat exchanger fouling with a variable-speed drive was analysed with data from three industrial cases. It was found that a mass flow rate estimate, which can be generated with a variable speed drive, can be used together with temperature measurements to monitor a heat exchanger’s thermal performance. Secondly, it was found that the fouling-related increase in the pressure drop of a heat exchanger can be monitored with a variable speed drive. Lastly, for systems where the flow device is speed controlled with by a pressure measurement, it was concluded that increasing rotational speed can be interpreted as progressing fouling in the heat exchanger.